前瞻科技 ›› 2025, Vol. 4 ›› Issue (3): 63-73.DOI: 10.3981/j.issn.2097-0781.2025.03.006
李庆斌1,2(
), 姚淇耀1, 胡昱1,2, 肖建庄1,3, 罗丹旎1,3,†(
)
收稿日期:2024-11-30
修回日期:2025-04-14
出版日期:2025-09-20
发布日期:2025-10-17
通讯作者:
†
作者简介:李庆斌,教授,博士研究生导师。水沙科学与水利水电工程全国重点实验室主任。《水力发电学报》主编。主要从事大坝混凝土断裂损伤力学、高坝结构分析与智能建造等方面的研究。主持国家级、省部级重大科研攻关项目17项。获国家科技进步奖二等奖、教育部科技进步奖一等奖和教育部自然科学奖一等奖等奖项。出版专著2部,发表论文260余篇。授权发明专利50余件。电子信箱:qingbinli@tsinghua.edu.cn。基金资助:
LI Qingbin1,2(
), YAO Qiyao1, HU Yu1,2, XIAO Jianzhuang1,3, LUO Danni1,3,†(
)
Received:2024-11-30
Revised:2025-04-14
Online:2025-09-20
Published:2025-10-17
Contact:
†
摘要:
大体积混凝土温控问题在现代运河建设中不可避免,影响着大体积混凝土结构的施工质量和使用寿命。在人工智能新时代及“碳达峰与碳中和”目标的背景下,大体积混凝土温控技术的发展面临着由传统施工措施向智能控制技术转型的机遇和挑战。为解决大体积混凝土水化热引起的开裂问题,并促进大体积混凝土温控技术智能化,文章系统分析了大体积混凝土温控技术的发展现状,结合材料选用、施工措施和智能温控等方面的研究成果,总结了大体积混凝土温控技术面临的挑战,最后指出需加强材料选用、施工措施和智能温控技术的深度融合,并加快大体积混凝土智能监控及预测技术、互联互通技术的研发与应用等发展建议。
李庆斌, 姚淇耀, 胡昱, 肖建庄, 罗丹旎. 现代运河大体积混凝土温控技术发展现状与展望[J]. 前瞻科技, 2025, 4(3): 63-73.
LI Qingbin, YAO Qiyao, HU Yu, XIAO Jianzhuang, LUO Danni. Development and Prospect of Temperature Control Technology of Mass Concrete for Modern Canal[J]. Science and Technology Foresight, 2025, 4(3): 63-73.
| 温控防裂材料 | 优势 | 劣势 |
|---|---|---|
| 低热水泥 | ① 低水化热、后期强度增长率大、后期强度高; ② 流变性和抗氯离子侵蚀性能可得到一定的提升; ③ 经济效益好 | ① 水化速率慢,影响早期强度增长; ② 施工周期延长 |
| 温升抑制剂 | ① 可有效降低水化放热速率; ② 有助于实现大体积混凝土温度场的孪生和控制 | ① 成本较高; ② 在低温条件下使用会导致水泥水化不完全 |
| 相变材料 | ① 即使在较大温差下,仍可控制温度平衡; ② 可用于高强大体积混凝土 | ① 成本高; ② 技术不成熟; ③ 工艺复杂 |
| 膨胀剂 | 通过产生膨胀应力,补偿因温度变化产生的收缩 | ① 用量控制不当,易产生开裂; ② 影响混凝土和易性 |
| 抗裂纤维 | ① 可有效控制裂缝的产生和发展; ② 施工工艺简单 | ① 成本高; ② 分散不均匀,易导致强度降低 |
表1 不同温控防裂材料的性能对比
Table 1 Comparison of properties of different temperature-controlled anti-cracking materials
| 温控防裂材料 | 优势 | 劣势 |
|---|---|---|
| 低热水泥 | ① 低水化热、后期强度增长率大、后期强度高; ② 流变性和抗氯离子侵蚀性能可得到一定的提升; ③ 经济效益好 | ① 水化速率慢,影响早期强度增长; ② 施工周期延长 |
| 温升抑制剂 | ① 可有效降低水化放热速率; ② 有助于实现大体积混凝土温度场的孪生和控制 | ① 成本较高; ② 在低温条件下使用会导致水泥水化不完全 |
| 相变材料 | ① 即使在较大温差下,仍可控制温度平衡; ② 可用于高强大体积混凝土 | ① 成本高; ② 技术不成熟; ③ 工艺复杂 |
| 膨胀剂 | 通过产生膨胀应力,补偿因温度变化产生的收缩 | ① 用量控制不当,易产生开裂; ② 影响混凝土和易性 |
| 抗裂纤维 | ① 可有效控制裂缝的产生和发展; ② 施工工艺简单 | ① 成本高; ② 分散不均匀,易导致强度降低 |
| 施工措施 | 优势 | 劣势 |
|---|---|---|
| 原材料预冷(风冷或水冷) | ① 冷却方法简单,易实现智能控制; ② 适用范围广 | ① 成本相对较高; ② 施工周期延长 |
| 新拌混凝土冷却(液氮冷却) | ① 成本低; ② 易获取; ③ 冷却效果好 | ① 冷却不均匀会影响混凝土强度发展; ② 会导致混凝土坍落度降低和凝结时间延长; ③ 混凝土搅拌机需要特殊衬板 |
| 冷却水管系统 | 在大体积混凝土结构中可有效控制水化热(如大坝) | ① 成本高昂; ② 可能会导致水管周围混凝土产生温度裂缝 |
| 保温隔热 | 成本低 | ① 温控效果与其他方法相比较差; ② 需要长时间放置 |
表2 大体积混凝土温控施工措施的对比
Table 2 Comparison of construction measures in temperature control of mass concrete
| 施工措施 | 优势 | 劣势 |
|---|---|---|
| 原材料预冷(风冷或水冷) | ① 冷却方法简单,易实现智能控制; ② 适用范围广 | ① 成本相对较高; ② 施工周期延长 |
| 新拌混凝土冷却(液氮冷却) | ① 成本低; ② 易获取; ③ 冷却效果好 | ① 冷却不均匀会影响混凝土强度发展; ② 会导致混凝土坍落度降低和凝结时间延长; ③ 混凝土搅拌机需要特殊衬板 |
| 冷却水管系统 | 在大体积混凝土结构中可有效控制水化热(如大坝) | ① 成本高昂; ② 可能会导致水管周围混凝土产生温度裂缝 |
| 保温隔热 | 成本低 | ① 温控效果与其他方法相比较差; ② 需要长时间放置 |
图2 大体积混凝土防裂智能监控技术架构 GPRS:General Packet Radio Service,通用分组无线服务;GSM:Global System for Mobile Communications,全球移动通信系统;PDA:Personal Digital Assistant,个人数字助理;RS485:Recommended Standard 485,485标准总线;Wi-Fi:Wireless Fidelity,无线保真;GSP:Global Positioning System,全球定位系统;ZigBee:蜂舞协议。
Fig. 2 Intelligent monitoring technology architecture for anti-cracking of large volume concrete
| [1] | Yang J, Hu Y, Zuo Z, et al. Thermal analysis of mass concrete embedded with double-layer staggered heterogeneous cooling water pipes[J]. Applied Thermal Engineering, 2012, 35: 145-156. |
| [2] | Singh M P, Sen S, Pathak H, et al. Early age cracking relevant to mass concrete dam structures during the construction schedule[J]. Construction and Building Materials, 2024, 411, doi: 10.1016/j.conbuildmat.2023.134739. |
| [3] | Zuo Z, Hu Y, Li Q B, et al. Data mining of the thermal performance of cool-pipes in massive concrete via in situ monitoring[J]. Mathematical Problems in Engineering, 2014, 2014(1), doi: 10.1155/2014/985659. |
| [4] | Tang H, Cai D S, Yang L. New planning of pipe cooling in temperature control for mass concrete[J]. Applied Mechanics and Materials, 2013, 300/301: 1584-1588. |
| [5] | Nguyen T C, Huynh T P, Tang V L. Prevention of crack formation in massive concrete at an early age by cooling pipe system[J]. Asian Journal of Civil Engineering, 2019, 20(8): 1101-1107. |
| [6] | Chen Y Y, Chen S Y, Yang C J, et al. Effects of insulation materials on mass concrete with pozzolans[J]. Construction and Building Materials, 2017, 137: 261-271. |
| [7] | Tasri A, Susilawati A. Effect of cooling water temperature and space between cooling pipes of post-cooling system on temperature and thermal stress in mass concrete[J]. Journal of Building Engineering, 2019, 24, doi: 10.1016/j.jobe.2019.100731. |
| [8] | 朱伯芳, 张国新, 贾金生, 等. 混凝土坝的数字监控—提高大坝监控水平的新途径[J]. 水力发电学报, 2009, 28(1): 130-136. |
| Zhu B F, Zhang G X, Jia J S, et al. Numerical monitoring of concrete dams — A new way for improving the safety control of concrete dams[J]. Journal of Hydroelectric Engineering, 2009, 28(1): 130-136. (in Chinese) | |
| [9] | Zhu H, Hu Y, Ma R, et al. Concrete thermal failure criteria, test method, and mechanism: A review[J]. Construction and Building Materials, 2021, 283, doi: 10.1016/j.conbuildmat.2021.122762. |
| [10] | Kim Y R, Khil B S, Jang S J, et al. Effect of barium-based phase change material (PCM) to control the heat of hydration on the mechanical properties of mass concrete[J]. Thermochimica Acta, 2015, 613: 100-107. |
| [11] | Woo H M, Kim C Y, Yeon J H. Heat of hydration and mechanical properties of mass concrete with high-volume GGBFS replacements[J]. Journal of Thermal Analysis and Calorimetry, 2018, 132(1): 599-609. |
| [12] | Zhao Z F, Wang K J, Lange D A, et al. Creep and thermal cracking of ultra-high volume fly ash mass concrete at early age[J]. Cement and Concrete Composites, 2019, 99: 191-202 |
| [13] | 田育功. 大坝与水工混凝土关键核心技术综述[J]. 华北水利水电大学学报(自然科学版), 2018, 39(5): 23-30, 52. |
| Tian Y G. Review on key and core technologies of dam and yydraulic concrete[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2018, 39(5): 23-30, 52. (in Chinese) | |
| [14] | Xie J, Wu Z M, Zhang X H, et al. Trends and developments in low-heat Portland cement and concrete: A review[J]. Construction and Building Materials, 2023, 392, doi: 10.1016/j.conbuildmat.2023.131535. |
| [15] | 肖建庄, 张青天, 余江滔, 等. 混凝土结构的新发展—组合混凝土结构[J]. 同济大学学报(自然科学版), 2018, 46(2): 147-155. |
| Xiao J Z, Zhang Q T, Yu J T, et al. A novel development of concrete structures: Composite concrete structures[J]. Journal of Tongji University (Natural Science), 2018, 46(2): 147-155. (in Chinese) | |
| [16] | 肖建庄, 蓝启彬, 张青天, 等. 组合再生混凝土及其衍生结构的应用及展望[J]. 建筑科学与工程学报, 2023, 40(1): 1-13. |
| Xiao J Z, Lan Q B, Zhang Q T, et al. Application and prospect of composite recycled concrete and its derived structure[J]. Journal of Architecture and Civil Engineering, 2023, 40(1): 1-13. (in Chinese) | |
| [17] | Lu S, Liu J, Peng C, et al. Multi-objective optimization of mix proportions for mass concrete with enhanced resistance to cracking and reduced temperature rise[J]. Case Studies in Construction Materials, 2024, 20, doi: 10.1016/j.cscm.2023.e02810. |
| [18] | Zhu J S, Wang Z Y. Experimental modeling and quantitative evaluation of mitigating cracks in early-age mass concrete by regulating heat transfer[J]. Journal of Building Engineering, 2024, 96, doi: 10.1016/j.jobe.2024.110641. |
| [19] | Guo R H, Shan L B, Wu Y H, et al. Phase-change materials for intelligent temperature regulation[J]. Materials Today Energy, 2022, 23, doi: 10.1016/j.mtener.2021.100888. |
| [20] | Pang C M, Mao Y R, Liu Z, et al. Effect and mechanism of phase change lightweight aggregate on temperature control and crack resistance in high-strength mass concrete[J]. Journal of Building Engineering, 2024, 97, doi: 10.1016/j.jobe.2024.110498. |
| [21] | Abdel-Raheem M, Quintana O, Morales M, et al. Construction methods used for controlling temperature in mass concrete structure[C]// Creative Construction Conference 2018-Proceedings. Budapest: Budapest University of Technology and Economics, 2018, doi: 10.3311/ccc2018-019. |
| [22] | Harith I K, Hassan M S, Hasan S S. Liquid nitrogen effect on the fresh concrete properties in hot weathering concrete[J]. Innovative Infrastructure Solutions, 2021, 7(1), doi: 10.1007/s41062-021-00731-6. |
| [23] | Zhu B F. Effect of cooling by water flowing in nonmetal pipes embedded in mass concrete[J]. Journal of Construction Engineering and Management, 1999, 125(1): 61-68. |
| [24] | 朱伯芳. 混凝土坝的数字监控[J]. 水利水电技术, 2008(2): 15-18. |
| Zhu B F. Numerical monitoring of conrete dams[J]. Water Resources and Hydropower Engineering, 2008(2): 15-18. (in Chinese) | |
| [25] | 张国新, 刘毅, 李松辉, 等. “九三一” 温度控制模式的研究与实践[J]. 水力发电学报, 2014, 33(2): 179-184. |
| Zhang G X, Liu Y, Li S H, et al. Research and practice of Nine-Three-One temperature control mode[J]. Journal of Hydroelectric Engineering, 2014, 33(2): 179-184. (in Chinese) | |
| [26] | 李庆斌, 石杰. 大坝建设4.0[J]. 水力发电学报, 2015, 34(8): 1-6. |
| Li Q B, Shi J. Dam construction 4.0[J]. Journal of Hydroelectric Engineering, 2015, 34(8): 1-6. (in Chinese) | |
| [27] | 李庆斌, 林鹏, 胡昱, 等. 大体积混凝土实时在线个性化换热智能温度控制系统及方法: CN201210298994.0[P]. 2014-11-26. |
| Li Q B, Lin P, Hu Y, et al. Real-time online personalized heat transfer intelligent temperature control system and method for mass concrete: CN201210298994.0[P]. 2014-11-26. (in Chinese) | |
| [28] | 林鹏, 李庆斌, 周绍武, 等. 大体积混凝土通水冷却智能温度控制方法与系统[J]. 水利学报, 2013, 44(8): 950-957. |
| Lin P, Li Q B, Zhou S W, et al. Intelligent cooling control method and system for mass concrete[J]. Journal of Hydraulic Engineering, 2013, 44(8): 950-957. (in Chinese) | |
| [29] |
李庆斌, 马睿, 胡昱, 等. 大坝智能建造研究进展与发展趋势[J]. 清华大学学报(自然科学版), 2022, 62(8): 1252-1269.
DOI |
| Li Q B, Ma R, Hu Y, et al. A review of intelligent dam construction techniques[J]. Journal of Tsinghua University (Science and Technology), 2022, 62(8): 1252-1269. (in Chinese) | |
| [30] | Xin J D, Zhang G X, Liu Y, et al. Effect of temperature history and restraint degree on cracking behavior of early-age concrete[J]. Construction and Building Materials, 2018, 192: 381-390. |
| [31] | Zhou H W, Zhou Y H, Zhao C J, et al. Feedback design of temperature control measures for concrete dams based on real-time temperature monitoring and construction process simulation[J]. KSCE Journal of Civil Engineering, 2018, 22(5): 1584-1592. |
| [32] | Li X D, Yu Z P, Chen K X, et al. Investigation of temperature development and cracking control strategies of mass concrete: A field monitoring case study[J]. Case Studies in Construction Materials, 2023, 18, doi: 10.1016/j.cscm.2023.e02144. |
| [33] | Ouyang J S, Chen X M, Huangfu Z H, et al. Application of distributed temperature sensing for cracking control of mass concrete[J]. Construction and Building Materials, 2019, 197: 778-791. |
| [34] | 刘毅, 辛建达, 张国新, 等. 大体积混凝土温控防裂智能监控技术[J]. 硅酸盐学报, 2023, 51(5): 1228-1233. |
| Liu Y, Xin J D, Zhang G X, et al. Intelligent monitoring technology of anti-thermal cracking for mass concrete[J]. Journal of the Chinese Ceramic Society, 2023, 51(5): 1228-1233. (in Chinese) | |
| [35] | Zhu H, Hu Y, Li Q B, et al. Restrained cracking failure behavior of concrete due to temperature and shrinkage[J]. Construction and Building Materials, 2020, 244, doi: 10.1016/j.conbuildmat.2020.118318. |
| [36] | 李庆斌, 林鹏. 论智能大坝[J]. 水力发电学报, 2014, 33(1): 139-146. |
| Li Q B, Lin P. Demonstration on intelligent dam[J]. Journal of Hydroelectric Engineering, 2014, 33(1): 139-146. (in Chinese) | |
| [37] | 张国新, 李松辉, 刘毅, 等. 大体积混凝土防裂智能监控系统[J]. 水利水电科技进展, 2015, 35(5): 83-88. |
| Zhang G X, Li S H, Liu Y, et al. Intelligent monitoring and control system for crack prevention of mass concrete[J]. Advances in Science and Technology of Water Resources, 2015, 35(5): 83-88. (in Chinese) | |
| [38] | 李松辉, 张国新, 刘毅, 等. 大体积混凝土防裂智能监控技术及工程应用[J]. 中国水利水电科学研究院学报, 2018, 16(1): 9-15. |
| Li S H, Zhang G X, Liu Y, et al. Mass concrete crack prevention intelligent monitoring technology and engineering application[J]. Journal of China Institute of Water Resources and Hydropower Research, 2018, 16(1): 9-15. (in Chinese) | |
| [39] | 林森, 孙仕勇, 邹翔, 等. 改性蒙脱石/石蜡相变储热微囊的制备与性能表征[J]. 材料工程, 2017, 45(3): 35-40. |
|
Lin S, Sun S Y, Zou X, et al. Preparation and characterization of modified montmorillonite/paraffin phase change microcapsules for energy storage[J]. Journal of Materials Engineering, 2017, 45(3): 35-40. (in Chinese)
DOI |
|
| [40] | 刘毅, 杜雷功, 钱文勋, 等. 高寒区高混凝土坝关键技术难题与解决途径[J]. 水利水电技术, 2020, 51(3): 45-52. |
| Liu Y, Du L G, Qian W X, et al. Study on key technical problems of high concrete dam construction in alpine region[J]. Water Resources and Hydropower Engineering, 2020, 51(3): 45-52. (in Chinese) | |
| [41] | Do T A, Hoang T T, Bui-Tien T, et al. Evaluation of heat of hydration, temperature evolution and thermal cracking risk in high-strength concrete at early ages[J]. Case Studies in Thermal Engineering, 2020, 21, doi: 10.1016/j.csite.2020.100658. |
| [42] | Xie Y D, Du W X, Xu Y G, et al. Temperature field evolution of mass concrete: From hydration dynamics, finite element models to real concrete structure[J]. Journal of Building Engineering, 2023, 65, doi: 10.1016/j.jobe.2022.105699. |
| [1] | 王新, 薛淑, 何俊辉, 钟林斌, 陈志宏, 严秀俊. 现代运河省水船闸大型闸阀门研究进展及发展建议[J]. 前瞻科技, 2025, 4(3): 108-117. |
| [2] | 肖建庄, 王劼耘, 程耀飞, 谢立全, 王长海, 马少坤, 柏美岩, 沈剑羽. 数字化时代下现代运河工程渣土资源化利用技术现状与展望[J]. 前瞻科技, 2025, 4(3): 118-128. |
| [3] | 金鸣, 胡张莉, 赵海涛, 王育江, 刘加平. 现代运河大体积混凝土开裂防控与长寿命研究现状及展望[J]. 前瞻科技, 2025, 4(3): 23-28. |
| [4] | 杨胜发, 胡江, 童思陈, 王丽, 姜蕾. 现代运河绿色航道高效安全运行的挑战及科学问题[J]. 前瞻科技, 2025, 4(3): 42-50. |
| [5] | 张明, 董蕴豪, 潘佳, 骆晓伟. 现代运河智能建造与智慧运维研究现状及关键科学问题[J]. 前瞻科技, 2025, 4(3): 74-83. |
| [6] | 薛大为, 钟一顺, 何茂丰, 鲍成儒, 刘先林, 闫强, 邵羽, 吕玺琳. 现代运河岸坡长期稳定性及安全保障关键技术研究进展与发展建议[J]. 前瞻科技, 2025, 4(3): 84-96. |
| [7] | 肖绪文, 胡亚安, 刘加平, 肖建庄, 方红卫, 霍守亮, 陈立华, 关铁生, 王新, 王雨春, 金鸣, 王睿, 闫强, 朱彤. 现代运河工程绿色建造与运维基础科学问题*[J]. 前瞻科技, 2025, 4(3): 9-22. |
| [8] | 李平, 肖璇, 刘朝晖, 白帆, 肖建庄, 程耀飞, 闫强, 曹东伟. 现代运河碳排放核算与低碳技术现状与展望[J]. 前瞻科技, 2025, 4(3): 97-107. |
| [9] | 檀朝东, 刘合, 高小永, 郝忠献, 李秋实. 中国陆上油气田生产智能化现状及展望[J]. 前瞻科技, 2023, 2(2): 121-130. |
| [10] | 芮振华, 李阳, 薛兆杰, 刘月亮. CO2提高油气采收率与地质封存关键技术发展建议[J]. 前瞻科技, 2023, 2(2): 145-160. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||

