| [1] |
Kaufmann P R, Hughes R M, Paulsen S G, et al. Physical habitat in conterminous US streams and rivers, Part 1: Geoclimatic controls and anthropogenic alteration[J]. Ecological Indicators, 2022, 141, doi: 10.1016/j.ecolind.2022.109046.
|
| [2] |
Parasiewicz P, Belka K, Łapińska M, et al. Over 200 000 kilometers of free-flowing river habitat in Europe is altered due to impoundments[J]. Nature Communications, 2023, 14, doi: 10.1038/s41467-23-40922-6.
|
| [3] |
EPA. National rivers and streams assessment 2013-2014: A collaborative survey: EPA 841-R-19-001[R]. Washington, D. C.: EPA, 2020.
|
| [4] |
Widén Å, Renöfält B M, Degerman E, et al. Environmental flow scenarios for a regulated river system: Projecting catchment-wide ecosystem benefits and consequences for hydroelectric production[J]. Water Resources Research, 2022, 58(1), doi: 10.1029/2021wr030297.
|
| [5] |
Whelan M J, Linstead C, Worrall F, et al. Is water quality in British rivers “better than at any time since the end of the industrial revolution”?[J]. Science of the Total Environment, 2022, 843, doi: 10.1016/j.scitotenv.2022.157014.
|
| [6] |
Yan H L, Lin Y Q, Chen Q W, et al. A review of the eco-environmental impacts of the south-to-north water diversion: Implications for interbasin water transfers[J]. Engineering, 2023, 30: 161-169.
|
| [7] |
Yu S Q, Qin H P, Ding W. Modeling the effects of vegetation dynamics on the hydrological performance of a bioretention system[J]. Journal of Hydrology, 2023, 620, doi: 10.1016/j.jhydrol.2023.129473.
|
| [8] |
Maavara T, Chen Q W, van Meter K, et al. River dam impacts on biogeochemical cycling[J]. Nature Reviews Earth & Environment, 2020, 1(2): 103-116.
|
| [9] |
Ye C, Li C H. Wetland ecological restoration using near-natural method[M]// Urban Water Management for Future Cities. Cham: Springer International Publishing, 2019: 157-172.
|
| [10] |
Mawer R, Pauwels I S, Bruneel S P, et al. Individual based models for the simulation of fish movement near barriers: Current work and future directions[J]. Journal of Environmental Management, 2023, 335, doi: 10.1016/j.jenvman.2023.117538.
|
| [11] |
Sommerwerk N, Bloesch J, Baumgartner C, et al. Chapter 3-the Danube River Basin[M]// TocknerK, ZarflC, RobinsonC T. Riversof Europe. 2nd ed. Amsterdam: Elsevier, 2022: 81-180.
|
| [12] |
Jiang A H, Sun F Z, Zhang B L, et al. Spatiotemporal dynamics and driving factors of vegetation coverage around linear cultural heritage: A case study of the Beijing-Hangzhou Grand Canal[J]. Journal of Environmental Management, 2024, 349, doi: 10.1016/j.jenvman.2023.119431.
|
| [13] |
Luo Q Y, Li S Y, Kinouchi T, et al. Existing levels of biodiversity and river location may determine changes from small hydropower developments[J]. Journal of Environmental Management, 2024, 357, doi: 10.1016/j.jenvman.2024.120697.
|
| [14] |
Dhal L, Swain S. Understanding and modeling the process of seawater intrusion: A review[M]// Advances in Remediation Techniques for Polluted Soils and Groundwater. Amsterdam: Elsevier, 2022: 269-290.
|
| [15] |
Zhu J R, Cheng X Y, Li L J, et al. Dynamic mechanism of an extremely severe saltwater intrusion in the Changjiang estuary in February 2014[J]. Hydrology and Earth System Sciences, 2020, 24(10): 5043-5056.
|
| [16] |
Setiawan I, Morgan L K, Doscher C. Saltwater intrusion from an estuarine river: A field investigation[J]. Journal of Hydrology, 2023, 617, doi: 10.1016/j.jhydrol.2022.128955.
|
| [17] |
Nogueira H I S, van der Hout A, O’Mahoney T S D, et al. The impact of density differences on the hydraulic design of leveling systems: The case of new large sea locks in IJmuiden and terneuzen[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2024, 150(1), doi: 10.1061/jwped5.wweng-1993.
|
| [18] |
Sun Z H, Fan J W, Yan X, et al. Analysis of critical river discharge for saltwater intrusion control in the upper South Branch of the Yangtze River Estuary[J]. Journal of Geographical Sciences, 2020, 30(5): 823-842.
DOI
|
| [19] |
Wang H, Li W S, Zuo C S, et al. Saltwater intrusion in the Pearl River Estuary (China): Variation characteristics and cause analysis[J]. Journal of Coastal Research, 2020, 36(6), doi: 10.2112/jcoastres-d-19-00130.1.
|
| [20] |
Tao Z J, Chen Y P, Pan S Q, et al. The influence of wind and waves on saltwater intrusion in the Yangtze Estuary: A numerical modeling study[J]. Journal of Geophysical Research: Oceans, 2024, 129(9), doi: 10.1029/2024jc021076.
|
| [21] |
胡江, 杨胜发, 肖毅, 等, 平陆运河青年枢纽海水入侵影响研究[R]. 重庆: 重庆交通大学, 2022.
|
|
Hu J, Yang S F, Xiao Y, et al. Research on the impact of seawater intrusion on the Qingnian hub of Pinglu Canal[R]. Chongqing: Chongqing Jiaotong University, 2022. (in Chinese)
|
| [22] |
Salgado J, Vélez M I, González-Arango C, et al. A century of limnological evolution and interactive threats in the Panama Canal: Long-term assessments from a shallow basin[J]. Science of the Total Environment, 2020, 729, doi: 10.1016/j.scitotenv.2020.138444.
|
| [23] |
Treske A. Undular bores (favre-waves) in open channels-Experimental studies[J]. Journal of Hydraulic Research, 1994, 32(3): 355-370.
|
| [24] |
Li Y K, Chanson H. Physical modeling of vanishing bores in open-channel flows[J]. Canadian Journal of Civil Engineering, 2022, 49(2): 289-294.
|
| [25] |
Zheng F D, Wang P Y, An J F, et al. Characteristics of undular surges propagating in still water[J]. KSCE Journal of Civil Engineering, 2021, 25(9): 3359-3368.
|
| [26] |
Shi X, Zhang N, Chen C, et al. Experimental study of characteristics of motions of a large mooring ship in long-period waves[J]. Journal of Marine Science and Technology, 2014, 22(2): 15, doi: 10.6119/JMST-013-0606-2.
|
| [27] |
Shi X Y.A comparative study on the motions of a mooring LNG ship in mixed waves and long-period waves respectively[C]//Proceedings of the 2016 4th International Conference on Renewable Energy and Environmental Technology (ICREET 2016). Dordrecht: Atlantis Press, 2017: 641-647.
|
| [28] |
Jiao J L, Huang S X, Guedes Soares C. Numerical investigation of ship motions in cross waves using CFD[J]. Ocean Engineering, 2021, 223, doi: 10.1016/j.oceaneng.2021. 108711.
|
| [29] |
Taylor E H. Flow characteristics at rectangular open-channel junctions[J]. Transactions of the American Society of Civil Engineers, 1944, 109(1): 893-902.
|
| [30] |
Schindfessel L, Creëlle S, de Mulder T. How different cross-sectional shapes influence the separation zone of an open-channel confluence[J]. Journal of Hydraulic Engineering, 2017, 143(9), doi: 10.1061/(asce)hy.1943-7900.0001336.
|
| [31] |
胡江, 杨胜发, 童思陈, 等. 平陆运河支流汇入口航道通航水流条件研究[R]. 重庆: 重庆交通大学, 2022.
|
|
Hu J, Yang S F, Tong S C, et al. Study on the avigation flow conditions of the entrance channel of the Pinglu Canal tributaries[R]. Chongqing: Chongqing Jiaotong University, 2022. (in Chinese)
|