Science and Technology Foresight ›› 2025, Vol. 4 ›› Issue (1): 58-69.DOI: 10.3981/j.issn.2097-0781.2025.01.006

• Review and Commentary • Previous Articles     Next Articles

Strategic Value and Technical Challenges of Nanowire Energy Storage Materials and Devices

HAN Kang1(), ZHANG Hao1, WANG Xuanpeng2,3, MAI Liqiang1,()   

  1. 1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
    2. School of Physics and Mechanics, Wuhan University of Technology, Wuhan 430070, China
    3. Zhongyu Feima New Material Technology Innovation Center, Zhengzhou 450001, China
  • Received:2024-12-23 Revised:2025-02-28 Online:2025-03-20 Published:2025-03-27
  • Contact: MAI Liqiang

纳米线储能材料与器件战略价值及技术挑战

韩康1(), 张浩1, 王选朋2,3, 麦立强1,()   

  1. 1.武汉理工大学材料复合新技术全国重点实验室,材料科学与工程学院,武汉 430070
    2.武汉理工大学物理与力学学院,武汉 430070
    3.中豫飞马新材料技术创新中心,郑州 450001
  • 通讯作者: 麦立强
  • 作者简介:韩康,博士研究生。主要研究方向为新型钾离子电池和高快充型熔融盐离子电池。作为核心成员参与了“飞秒光场调控制备新型柔性电子材料及器件”“分级介孔纳米线钾离子电池正极材料的表界面调控及原位作用机制”等多项国家级科研项目。在Advanced Function Materials、Nano Energy、Agnew、Chem等期刊发表10余论文。电子信箱:hankang@whut.edu.cn
    麦立强,博士研究生导师,武汉理工大学副校长、首席教授。国家杰出青年科学基金获得者,国家重点研发计划首席科学家,英国皇家化学会会士,中国微米纳米技术学会会士,中国化学会会士。主要从事新能源材料与器件科学技术及应用研究。以第一完成人获国家自然科学二等奖、何梁何利基金科学与技术创新奖、国际电化学能源科学与技术大会卓越研究奖、国际车用锂电池协会卓越研究奖、国家教学成果二等奖、教育部/湖北省自然科学一等奖(3项)和中国材料研究学会技术发明一等奖,连续5年入选科睿唯安全球高被引科学家。电子信箱:mlq518@whut.edu.cn
  • 基金资助:
    国家重点研发计划(2020YFA0715000);国家重点研发计划(52127816)

Abstract:

Under the dual impetus of global carbon neutrality goals and energy security strategies, nanowire energy storage materials and devices have emerged as a pivotal engine driving the development of next-generation high-performance energy storage technologies, owing to their unique structural advantages and performance scalability. This article systematically summarized the groundbreaking advancements of nanowire materials in fields such as energy storage batteries and flexible and micro-nano energy storage devices and highlighted their critical value in strategic scenarios including rapid response in new power systems, autonomous energy supply for flexible electronics, and high energy density requirements in low-altitude economies. Furthermore, to address challenges such as the lack of multi-physics field coupling regulation mechanisms, unclear multi-particle collaborative transport mechanisms, and contradictions in cross-scale functional integration, the article proposed the establishment of a synergistic innovation system encompassing “fundamental theory, device engineering, and industrial ecology.” By leveraging multi-field coupled in-situ characterization, external field synergistic manufacturing, and data-driven research paradigms, the article aims to facilitate the transition of technology from laboratory to industrialization, thereby providing strategic support for securing a leading position in global energy storage technology.

Key words: nanowire energy storage material, nanowire device, multi-field coupling regulation, in-situ characterization

摘要:

在全球碳中和目标与能源安全战略的双重驱动下,纳米线储能材料与器件凭借其独特的结构优势与性能可扩展性,已成为推动下一代高性能储能技术发展的核心引擎。文章系统总结了纳米线材料在储能电池、柔性及微纳储能器件等领域的突破性进展,揭示其在新型电力系统快速响应、柔性电子能源自主化、低空经济高能量密度需求等战略场景中的关键价值。同时,针对多物理场耦合调控机制缺失、多粒子协同输运机制不明及跨尺度功能集成矛盾等挑战,提出构建“基础理论-器件工程-产业生态”协同创新体系,通过多场耦合原位表征、外场协同制造及数据驱动研发范式,推动技术从实验室向产业化跃迁,为抢占全球储能技术制高点提供战略支撑。

关键词: 纳米线储能材料, 纳米线器件, 多场耦合调控, 原位表征