[1] |
Ma Y W. Development of high-performance iron-based superconducting wires and tapes[J]. Physica C: Superconductivity and Its Applications, 2015, 516: 17-26.
|
[2] |
Yamamoto A, Polyanskii A A, Jiang J, et al. Evidence for two distinct scales of current flow in polycrystalline Sm and Nd iron oxypnictides[J]. Superconductor Science and Technology, 2008, 21(9): 95008, doi: 10.1088/0953-2048/21/9/095008.
|
[3] |
Prozorov R, Tillman M E, Mun E D, et al. Intrinsic magnetic properties of the superconductor NdFeAsO0.9F0.1 from local and global measurements[J]. New Journal of Physics, 2009, 11(3): 035004, doi: 10.1088/1367-2630/11/3/035004.
|
[4] |
Lee S, Jiang J, Weiss J D, et al. Weak-link behavior of grain boundaries in superconducting Ba(Fe1-xCox)2As2 bicrystals[J]. Applied Physics Letters, 2009, 95(21): 212505, doi: 10.1063/1.3262953.
|
[5] |
Kametani F, Li P, Abraimov D, et al. Intergrain current flow in a randomly oriented polycrystalline SmFeAsO0.85 oxypnictide[J]. Applied Physics Letters, 2009, 95(14): 142502, doi: 10.1063/1.3224198.
|
[6] |
Weiss J D, Jiang J, Polyanskii A A, et al. Mechanochemical synthesis of pnictide compounds and superconducting Ba0.6K0.4Fe2As2 bulks with high critical current density[J]. Superconductor Science Technology, 2013, 26(7): 074003, doi: 10.1088/0953-2048/26/7/074003.
|
[7] |
Kim Y J, Weiss J D, Hellstrom E E, et al. Evidence for composition variations and impurity segregation at grain boundaries in high current-density polycrystalline K- and Co-doped BaFe2As2 superconductors[J]. Applied Physics Letters, 2014, 105(16): 162604, doi: 10.1063/1.4898191.
|
[8] |
Nikolo M, Shi X, Choi E S, et al. Inter- and intra-granular flux pinning in Ba(Fe0.91Co0.09)2As2 superconductors[J]. Physics Procedia, 2015, 67: 987-992.
|
[9] |
Nikolo M, Weiss J D, Singleton J, et al. Critical properties of bulk-doped BaFe2As2 pnictides for magnet design[J]. IEEE Transactions on Applied Superconductivity, 2018, 28(3): 7300104, doi: 10.1109/TASC.2017.2775580.
|
[10] |
Kametani F, Su Y, Tarantini C, et al. On the mechanisms of Jc increment and degradation in high-Jc Ba122 tapes made by different processing methods[J]. Applied Physics Express, 2024, 17(1): 13004, doi: 10.35848/1882-786/ad1891.
|
[11] |
Ozaki T, Mizuguchi Y, Demura S, et al. Enhancement of superconducting properties in FeSe wires using a quenching technique[J]. Journal of Applied Physics, 2012, 111(1): 013912, doi: 10.1063/1.3673826.
|
[12] |
Togano K, Matsumoto A, Kumakura H. Synthesis of high-density polycrystalline (Ba, K)Fe2As2 superconductor and its critical properties[J]. Journal of the Japan Institute of Metals, 2010, 74(7): 453-459.
|
[13] |
Togano K, Gao Z S, Taira H, et al. Enhanced high-field transport critical current densities observed for ex situ PIT processed Ag/(Ba, K)Fe2As2 thin tapes[J]. Superconductor Science and Technology, 2013, 26(6): 65003, doi: 10.1088/0953-2048/26/6/065003.
|
[14] |
Gao Z S, Togano K, Matsumoto A, et al. Achievement of practical level critical current densities in Ba1-xKxFe2As2/Ag tapes by conventional cold mechanical deformation[J]. Scientific Reports, 2014, 4: 4065, doi: 10.1038/srep04065.
|
[15] |
Fujioka M, Ozaki T, Okazaki H, et al. Effect of the indium addition on the superconducting property and the impurity phase in polycrystalline SmFeAsO1-xFx[J]. Journal of the Physical Society of Japan, 2013, 82(2): 024705, doi: 10.7566/jpsj.82.024705.
|
[16] |
Pyon S, Tsuchiya Y, Inoue H, et al. Enhancement of critical current densities by high-pressure sintering in (Sr, K)Fe2As2PIT wires[J]. Superconductor Science and Technology, 2014, 27(9): 95002, doi: 10.1088/0953-2048/27/9/095002.
|
[17] |
Suwa T, Pyon S, Tamegai T, et al. Promising critical current density characteristics of Ag-sheathed (Sr, Na)Fe2As2 tape[J]. Applied Physics Express, 2018, 11(6): 063101, doi: 10.7567/apex.11.063101.
|
[18] |
Pyon S, Ito T, Tamegai T, et al. Fabrication of multi-filament (Ba, a)Fe2As2 (A: Na, K) HIP round wires and a small superconducting coil[J]. Superconductor Science and Technology, 2023, 36(1): 15009, doi: 10.1088/1361-6668/aca726.
|
[19] |
Ishida S, Taira H, Ishii A, et al. Fabrication of iron-based superconducting tapes using Ba1-xKxFe2As2with x=0.3 and 0.4[J]. Superconductor Science and Technology, 2017, 30(5): 54001, doi: 10.1088/1361-6668/aa62d4.
|
[20] |
Tropeano M, Pallecchi I, Cimberle M R, et al. Transport and superconducting properties of Fe-based superconductors: A comparison between SmFeAsO1-xFx and Fe1+yTe1-xSex[J]. Superconductor Science and Technology, 2010, 23(5): 54001, doi: 10.1088/0953-2048/23/5/054001.
|
[21] |
Martinelli A, Ferretti M, Manfrinetti P, et al. Synthesis, crystal structure, microstructure, transport and magnetic properties of SmFeAsO and SmFeAs(O0.93F0.07)[J]. Superconductor Science and Technology, 2008, 21(9): 95017, doi: 10.1088/0953-2048/21/9/095017.
|
[22] |
Palombo M, Malagoli A, Pani M, et al. Exploring the feasibility of Fe(Se, Te) conductors by ex-situ powder-in-tube method[J]. Journal of Applied Physics, 2015, 117(21): 213903, doi: 10.1063/1.4921902.
|
[23] |
Sylva G, Bellingeri E, Bernini C, et al. The role of texturing and thickness of oxide buffer layers in the superconducting properties of Fe(Se, Te) coated conductors[J]. Superconductor Science and Technology, 2020, 33(11): 114002, doi: 10.1088/1361-6668/abb35d.
|
[24] |
Contarino D, Löhnert C, Johrendt D, et al. Development and characterization of P-doped Ba-122 superconducting tapes[J]. IEEE Transactions on Applied Superconductivity, 2017, 27(4): 7300504, doi: 10.1109/TASC.2016.2633386.
|
[25] |
Zhang X P, Yao C, Lin H, et al. Realization of practical level current densities in Sr0.6K0.4Fe2As2 tape conductors for high-field applications[J]. Applied Physics Letters, 2014, 104(20): 202601, doi: 10.1063/1.4879557.
|
[26] |
Dong C H, Xu Q J, Ma Y W. Towards high-field applications: high-performance, low-cost iron-based superconductors[J]. National Science Review, 2024, 11(11): nwae122, doi: 10.1093/nsr/nwae122.
|
[27] |
Yao C, Ma Y W, Zhang X P, et al. Fabrication and transport properties of Sr0.6K0.4Fe2As2 multifilamentary superconducting wires[J]. Applied Physics Letters, 2013, 102(8): 082602, doi: 10.1063/1.4794059.
|
[28] |
Dong C H, Yao C, Zhang X P, et al. Transport critical current density in single-core composite Ba122 superconducting tapes[J]. IEEE Transactions on Applied Superconductivity, 2019, 29(5): 7300504, doi: 10.1109/TASC.2019.2901378.
|
[29] |
Zhang X P, Oguro H, Yao C, et al. Superconducting properties of 100-m class Sr0.6K0.4Fe2As2 tape and pancake coils[J]. IEEE Transactions on Applied Superconductivity, 2017, 27(4): 7300705, doi: 10.1109/TASC.2017.2650408.
|
[30] |
Wang D L, Zhang Z, Zhang X P, et al. First performance test of a 30 mm iron-based superconductor single pancake coil under a 24 T background field[J]. Superconductor Science and Technology, 2019, 32(4): 4LT01, doi: 10.1088/1361-6668/ab09a4.
|
[31] |
Zhang Z, Wang D L, Wei S Q, et al. First performance test of the iron-based superconducting racetrack coils at 10 T[J]. Superconductor Science and Technology, 2021, 34(3): 35021, doi: 10.1088/1361-6668/abb11b.
|
[32] |
Ding H W, Zhao H, Huang P C, et al. Development of the first Tesla class iron-based superconducting coil for high field application[J]. Superconductor Science and Technology, 2023, 36(11): 11LT01, doi: 10.1088/1361-6668/acfa29.
|
[33] |
Tamegai T. Iron-based superconductors have joined the practical high-field magnet family[J]. Superconductor Science and Technology, 2024, 37(1): 10501, doi: 10.1088/1361-6668/ad09e8.
|
[34] |
Chen Y L, Cui Y J, Yang Y, et al. Peak effect and superconducting properties of SmFeAsO0.8F0.2 wires[J]. Superconductor Science and Technology, 2008, 21(11): 115014, doi: 10.1088/0953-2048/21/11/115014.
|
[35] |
Zhang Q J, Lin H, Yuan P S, et al. Low-temperature synthesis to achieve high critical current density and avoid a reaction layer in SmFeAsO1-xFxsuperconducting tapes[J]. Superconductor Science and Technology, 2015, 28(10): 105005, doi: 10.1088/0953-2048/28/10/105005.
|
[36] |
Li X, Collings E W, Wan F, et al. Effect of biaxial cold pressure densification (BCPD) on Ba0.6K0.4Fe2As2 round wire using optimized precursor[J]. Ceramics International, 2018, 44(4): 4457-4461.
|
[37] |
Zhang S N, Liu J X, Feng J Q, et al. Optimization of FeSe superconducting tapes with different sheath materials and precursor powders[J]. Journal of Superconductivity and Novel Magnetism, 2018, 31(9): 2747-2751.
|
[38] |
Zhang S N, Liu J X, Feng J Q, et al. Influences of Ag doping on the high energy ball milling aided sintering FeSe superconductors[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(2): 1018-1024.
|
[39] |
Pan B J, Zhao K, Liu T, et al. Direct microwave synthesis of 11-type Fe(Te, Se) polycrystalline superconductors with enhanced critical current density[J]. Chinese Physics Letters, 2018, 36(1): 17401, doi: 10.1088/0256-307x/36/1/017401.
|
[40] |
Liu L F, Ye J C, Mou S J, et al. Fabrication of meter-long class Fe(Se, Te)-coated conductors with high superconducting performance[J]. Advanced Engineering Materials, 2023, 25(9): 2370032, doi: 10.1002/adem.202370032.
|
[41] |
Liu X, Shi Y, Wei S Q, et al. Study on the transport current of FeSe0.5Te0.5 coated conductor with different stabilizing layers and solders[J]. Cryogenics, 2023, 133: 103711, doi: 10.1016/j.cryogenics.2023.103711.
|
[42] |
Song J N, Xu Z T, Xiong X M, et al. Critical role played by interface engineering in weakening thickness dependence of superconducting and structural properties of FeSe0.5Te0.5-coated conductors[J]. ACS Applied Materials & Interfaces, 2023, 15(21): 26215-26224.
|