Science and Technology Foresight ›› 2023, Vol. 2 ›› Issue (4): 70-77.DOI: 10.3981/j.issn.2097-0781.2023.04.007

• Review and Commentary • Previous Articles     Next Articles

Aerodynamic Design of High-speed Maglev Trains for Running Stability

TIAN Hongqi1,2,(), ZHANG Lei1,2, WANG Tiantian1,2,3, ZHOU Dan1,2, MENG Shuang1,2, LIU Dongrun1,2, CHEN Guang1,2, WANG Jiabin1,2   

  1. 1. Key Laboratory of Traffic Safety on Track of Ministry of Education, Central South University, Changsha 410075, China
    2. School of Traffic & Transportation Engineering, Central South University, Changsha 410075, China
    3. College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
  • Received:2023-11-01 Revised:2023-11-16 Online:2023-12-20 Published:2024-01-07
  • Contact:

面向行车平稳性的高速磁浮列车气动设计

田红旗1,2,(), 张雷1,2, 王田天1,2,3, 周丹1,2, 孟爽1,2, 刘东润1,2, 陈光1,2, 王家斌1,2   

  1. 1.中南大学轨道交通安全教育部重点实验室,长沙 410075
    2.中南大学交通运输工程学院,长沙 410075
    3.湖南大学机械与运载工程学院,长沙 410082
  • 通讯作者:
  • 作者简介:田红旗,教授,中国工程院院士。湖南省科协主席。中国轨道交通空气动力学、列车撞击动力学两个领域开拓者。电子信箱:thq@csu.edu.cn

Abstract:

The operating speed of the high-speed maglev train is increased to 600 km/h, resulting in a significant increase in aerodynamic drag and lift forces. The aerodynamic lift force of each carriage varies greatly and changes drastically. In scenes with strong winds, two-train crossing, and entering or exiting tunnels, the overturning moment, yawing moment, and pitching moment of the train increase significantly, and even exhibit severe fluctuations, which not only seriously affects the running stability of the high-speed maglev train but also increases the difficulty of accurate control of the levitation guidance system. This paper discusses the current research status of aerodynamic design of high-speed maglev trains, analyzes the challenges faced in terms of basic theory, key technologies, and standard and evaluation system. The paper proposes research directions and countermeasures for aerodynamic design of high-speed maglev trains focusing on running stability. The research directions and countermeasures include the matching design of aerodynamic forces and electromagnetic forces, the construction of aerodynamic collaborative design and experimental verification technology system.

Key words: maglev train, aerodynamics, electromagnetic levitation, aerodynamic design, running stability

摘要:

高速磁浮列车运行速度提升至600 km/h,其气动阻力、升力急剧增加,各车厢气动升力差异巨大且变化增大;强风、交会及进出隧道场景下,列车倾覆力矩、偏航力矩及俯仰力矩显著增加,甚至出现剧烈波动,不仅严重影响高速磁浮列车运行平稳性,同时加大了悬浮导向系统精准控制的难度。文章论述了高速磁浮列车气动设计研究现状,从基础理论、关键技术与标准评估方面剖析了高速磁浮列车气动设计面临的挑战,围绕气动力与电磁力匹配设计、气动协同设计与试验验证技术体系构建,提出了面向行车平稳性的高速磁浮列车气动设计研究方向与对策建议。

关键词: 磁浮列车, 空气动力学, 电磁悬浮, 气动设计, 运行平稳性