[1] |
吴祥明. 磁浮列车[M]. 上海: 上海科学技术出版社, 2003.
|
[2] |
张昆仑, 王滢, 董金文, 等. 高速磁浮铁路技术[M]. 北京: 中国铁道出版社有限公司, 2021.
|
[3] |
丁叁叁. 时速600公里高速磁浮交通系统[M]. 上海: 上海科学技术出版社, 2022.
|
[4] |
龙志强. 永磁电磁悬浮技术及应用研究[M]. 上海: 上海科学技术出版社, 2023.
|
[5] |
龙鑫林. 永磁电磁型低速磁浮列车控制技术研究[D]. 长沙: 国防科技大学, 2012.
|
[6] |
郝阿明. 常导高速磁浮列车悬浮导向系统关键技术研究[D]. 长沙: 国防科技大学, 2008.
|
[7] |
Nielsen C, Fulford C, Maggiore M. Path following using transverse feedback linearization: Application to a maglev positioning system[J]. Automatica, 2010, 46(3): 585-590.
DOI
URL
|
[8] |
郑丽莉. 钢轨涡流对EMS型低速磁浮列车悬浮力影响的研究[D]. 长沙: 国防科技大学, 2010.
|
[9] |
Ding J, Yang X, Long Z, et al. Three-dimensional numerical analysis and optimization of electromagnetic suspension system for 200 km/h maglev train considering eddy current effect[J]. IEEE Access, 2018, 6: 61547-61555.
DOI
URL
|
[10] |
Zhou D, Yu P, Wang L, et al. An adaptive vibration control method to suppress the vibration of the maglev train caused by track irregularities[J]. Journal of Sound and Vibration, 2017, 408: 331-350.
DOI
URL
|
[11] |
Li J, Li J, Zhou D, et al. The active control of maglev stationary self-excited vibration with a virtual energy harvester[J]. IEEE Transactions on Industrial Electronics, 2015, 62(5): 2942-2951.
DOI
URL
|
[12] |
周丹峰, 李杰, 余佩倡, 等. 磁浮交通轨排耦合自激振动分析及自适应控制方法[J]. 自动化学报, 2019, 45(12): 2328-2343.
|
[13] |
Xu Y, Long Z, Zhao Z, et al. Real-time stability performance monitoring and evaluation of maglev trains’ levitation system: A data-driven approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(3): 1912-1923.
DOI
URL
|
[14] |
梁鑫. 磁浮列车车轨耦合振动分析及试验研究[D]. 成都: 西南交通大学, 2015.
|
[15] |
Boldea I, Tutelea L, Xu W. Linear electric machines, drives and MAGLEVs: An overview[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 7504-7515.
DOI
URL
|
[16] |
Zhao S, Liu Y, Long Z, et al. Research on control system of maglev train based on fuzzy PID[C]// Proceedings of the 2019 Chinese Automation Congress. Beijing: Chinese Automation Congress, 2019: 4422-4427.
|
[17] |
Sun Y, Wang S, Lu Y, et al. Gaussian process dynamic modeling and backstepping sliding mode control for magnetic levitation system of maglev train[J]. Journal of Theoretical and Applied Mechanics, 2021, 60(1): 49-62.
|
[18] |
Ni F, Mu S, Kang J, et al. Robust controller design for maglev suspension systems based on improved suspension force model[J]. IEEE Transactions on Transportation Electrification, 2021, 7(3): 1765-1779.
DOI
URL
|
[19] |
Leng P, Yu P, Gao M, et al. Optimal control scheme of maglev train based on the disturbance observer technical committee on control theory[C]// Proceedings of the 2019 Chinese Association of Automation. Beijing: Chinese Association of Automation, 2019: 1935-1940.
|
[20] |
Jiang S, Shen D, Zhang T, et al. Nonlinear robust composite levitation control for high-speed EMS trains with input saturation and track irregularities[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11): 20323-20336.
DOI
URL
|
[21] |
Ouyang Q, Fan K, Liu Y, et al. Adaptive LADRC parameter optimization in magnetic levitation[J]. IEEE Access, 2021, 9: 2169-3536.
|
[22] |
Chen C, Xu J, Rong L, et al. Neural-network state-observation-based adaptive inversion control method of maglev train[J]. IEEE Transactions on Vehicular Technology, 71(4): 3660-3669.
DOI
URL
|
[23] |
Sun Y, Xu J, Wu H, et al. Deep learning based semi-supervised control for vertical security of maglev vehicle with guaranteed bounded airgap[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 7: 4431-4442.
|
[24] |
龙志强. 磁浮列车状态监测、故障诊断与容错控制[M]. 上海: 上海科学技术出版社, 2023.
|
[25] |
Wang Z, Long Z, Luo J, et al. A data-driven fault diagnosis of high-speed maglev train levitation system[J]. International Journal of Adaptive Control and Signal Processing, 2023, 37(10): 2671-2689.
DOI
URL
|
[26] |
李晓龙, 张志洲, 龙志强. 基于反馈增益重构的传感器主动容错控制[J]. 兵工自动化, 2008(4): 59-63.
|
[27] |
Yetendje A, Seron M M, Doná J A, et al. Fault-tolerant switching control of a magnetic levitation system[J]. International Federation of Automatic Control, 2009, 42(8): 372-377.
|