[1] |
李毅, 赵永庆, 曾卫东. 航空钛合金的应用及发展趋势[J]. 材料导报, 2020, 34(增刊1): 280-282.
|
|
Li Y, Zhao Y Q, Zeng W D. Application and development of aerial titanium alloys[J]. Materials Reports, 2020, 34(Suppl 1): 280-282. (in Chinese)
|
[2] |
柳建国, 赵刚, 王东生, 等. “十四五” 规划期间我国铸造行业发展浅析[J]. 铸造, 2023, 72(8): 947-955.
|
|
Liu J G, Zhao G, Wang D S, et al. Analysis on development of China’s foundry industry in the“14th Five-Year Plan period”[J]. Foundry, 2023, 72(8): 947-955. (in Chinese)
|
[3] |
李红, 闫维嘉, 张禹, 等. 先进航空材料焊接过程热裂纹研究进展[J]. 材料工程, 2022, 50(2): 50-61.
DOI
|
|
Li H, Yan W J, Zhang Y, et al. Research progress of hot crack in fusion welding of advanced aeronautical materials[J]. Journal of Materials Engineering, 2022, 50(2): 50-61. (in Chinese)
DOI
|
[4] |
赵明杰, 黄亮, 李昌民, 等. 300M钢的热变形行为及热锻成形工艺研究现状[J]. 精密成形工程, 2020, 12(6): 16-27.
|
|
Zhao M J, Huang L, Li C M, et al. Research status of the hot deformation behaviors and hot forging process of 300M steel[J]. Journal of Netshape Forming Engineering, 2020, 12(6): 16-27. (in Chinese)
|
[5] |
宋波, 张磊, 王晓波, 等. 面向航空航天的增材制造超材料的研究现状及发展趋势[J]. 航空制造技术, 2022, 65(14): 22-33.
|
|
Song B, Zhang L, Wang X B, et al. Research status and development trend of additive manufacturing metamaterials toward aerospace[J]. Aeronautical Manufacturing Technology, 2022, 65(14): 22-33. (in Chinese)
|
[6] |
陈玉勇, 叶园, 张宇, 等. 粉末冶金制备TiAl合金研究进展[J]. 稀有金属材料与工程, 2023, 52(11): 4002-4012.
|
|
Chen Y Y, Ye Y, Zhang Y, et al. Research progress on TiAl alloy prepared by powder metallurgy[J]. Rare Metal Materials and Engineering, 2023, 52(11): 4002-4012. (in Chinese)
|
[7] |
Shultzman A, Segal O, Kurman Y, et al. Enhanced imaging using inverse design of nanophotonic scintillators[J]. Advanced Optical Materials, 2023, 11(8): 2202318, doi: 10.1002/adom.202202318.
|
[8] |
Zhao X Y, Liang J J, He Z X, et al. Blowhole detection based on bidirectional enhancement and omnidirectional analysis for X-ray inspection of castings[J]. Mathematical Problems in Engineering, 2019, 2019(1): 2468505, doi: 10.1155/2019/2468505.
|
[9] |
Gonzalez R C, Woods R E, Masters B R. Digital image processing[M]. Hoboken: Prentice Hall, 2007.
|
[10] |
Bishop C M. Pattern recognition and machine learning[M]. New York: Springer, 2006.
|
[11] |
Lecun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
|
[12] |
Mery D, Hahn D, Hitschfeld N. Simulation of defects in aluminium castings using CAD models of flaws and real X-ray images[J]. Insight-Non-Destructive Testing and Condition Monitoring, 2005, 47(10): 618-624.
|
[13] |
马明辉. 基于分层模板的铸造枝状缩松仿真[D]. 广州: 华南理工大学, 2012.
|
|
Ma M H. Simulation of dendritic shrinkage in casting based on layered template[D]. Guangzhou: South China University of Technology, 2012. (in Chinese)
|
[14] |
周洲. 轮芯缺陷检测及缺陷样本生成技术[D]. 广州: 华南理工大学, 2019.
|
|
Zhou Z. Technology of wheel core defect detection and defect sample generation[D]. Guangzhou: South China University of Technology, 2019. (in Chinese)
|
[15] |
Strecker H. A local feature method for the detection of flaws in automated X-ray inspection of castings[J]. Signal Processing, 1983, 5(5): 423-431.
|
[16] |
李高亮. 基于X射线图像的汽车轮毂缺陷自动检测与识别技术研究[D]. 太原: 中北大学, 2013.
|
|
Li G L. Research on automatic detection and identification technology of automobile wheel hub defects based on X-ray images[D]. Taiyuan: North University of China, 2013. (in Chinese)
|
[17] |
Cha Y J, Choi W, Büyüköztürk O. Deep learning-based crack damage detection using convolutional neural networks[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(5): 361-378.
|
[18] |
Yu H, Li X J, Song K C, et al. Adaptive depth and receptive field selection network for defect semantic segmentation on castings X-rays[J]. NDT & E International, 2020, 116: 102345, doi: 10.1016/j.ndteint.2020.102345.
|
[19] |
Hernández S, Sáez D, Mery D. Neuro-fuzzy method for automated defect detection in aluminium castings[M]//Image Analysis and Recognition. Berlin, Heidelberg: Springer, 2004: 826-833.
|
[20] |
Li W, Li K S, Huang Y, et al. A new trend peak algorithm with X-ray image for wheel hubs detection and recognition[M]// Computational Intelligence and Intelligent Systems. Singapore: Springer Singapore, 2016: 23-31.
|
[21] |
刘浩. 基于X射线的铸件缺陷检测的深度学习方法研究及实现[D]. 太原: 太原科技大学, 2018.
|
|
Liu H. Research and implementation of deep learning method for casting defect detection based on X-ray[D]. Taiyuan: Taiyuan University of Science and Technology, 2018. (in Chinese)
|
[22] |
张辉, 张邹铨, 陈煜嵘, 等. 工业铸件缺陷无损检测技术的应用进展与展望[J]. 自动化学报, 2022, 48(4): 935-956.
|
|
Zhang H, Zhang Z Q, Chen Y R, et al. Application advance and prospect of nondestructive testing technology for industrial casting defects[J]. Acta Automatica Sinica, 2022, 48(4): 935-956. (in Chinese)
|
[23] |
Hou M J, Dong H, Ji X Y, et al. I-DCGAN and TOPSIS-IFP: A simulation generation model for radiographic flaw detection images in light alloy castings and an algorithm for quality evaluation of generated images[J]. China Foundry, 2024, 21(3): 239-247.
|
[24] |
Ji X Y, Yan Q Y, Huang D, et al. Filtered selective search and evenly distributed convolutional neural networks for casting defects recognition[J]. Journal of Materials Processing Technology, 2021, 292: 117064, doi: 10.1016/j.jmatprotec.2021.117064.
|
[25] |
Wu B, Zhou J X, Ji X Y, et al. An ameliorated teaching-learning-based optimization algorithm based study of image segmentation for multilevel thresholding using Kapur’s entropy and Otsu’s between class variance[J]. Information Sciences, 2020, 533: 72-107.
|
[26] |
Jiang H Q, Yang D Y, Zhi Z L, et al. A normal weld recognition method for time-of-flight diffraction detection based on generative adversarial network[J]. Journal of Intelligent Manufacturing, 2024, 35(1): 217-233.
|
[27] |
Zhi Z L, Jiang H Q, Yang D Y, et al. An end-to-end welding defect detection approach based on titanium alloy time-of-flight diffraction images[J]. Journal of Intelligent Manufacturing, 2023, 34(4): 1895-1909.
|
[28] |
班瑞, 张日丰, 陶智勇, 等. 金属内部微小缺陷的多通道光纤干涉激光超声无损检测[J]. 中国激光, 2024, 51(14): 144-152.
|
|
Ban R, Zhang R F, Tao Z Y, et al. Laser ultrasonic non-destructive testing of small defects in metals using multi-channel fiber interferometer[J]. Chinese Journal of Lasers, 2024, 51(14): 144-152. (in Chinese)
|
[29] |
罗立群, 朱佳震, 陈均, 等. 稳压器波动管接管与底封头焊缝相控阵超声检测技术研究[J]. 核动力工程, 2024, 45(5): 232-242.
|
|
Luo L Q, Zhu J Z, Chen J, et al. Research on phased array ultrasonic inspection technology for the pressurizer surge nozzle to vessel weld[J]. Nuclear Power Engineering, 2024, 45(5): 232-242. (in Chinese)
|