Science and Technology Foresight ›› 2022, Vol. 1 ›› Issue (1): 38-50.DOI: 10.3981/j.issn.2097-0781.2022.01.004
• Review and Commentary • Previous Articles Next Articles
WANG Yongjun1(), ZHAO Chengxuan1, LI Detian1,†(
), WANG Yi2, ZHANG Haiyan1, LI Cunhui1, ZHUANG Jianhong1, ZHANG Huzhong1
Received:
2022-02-21
Revised:
2022-03-09
Online:
2022-03-20
Published:
2022-04-20
Contact:
LI Detian
王永军1(), 赵呈选1, 李得天1,†(
), 王鹢2, 张海燕1, 李存惠1, 庄建宏1, 张虎忠1
通讯作者:
李得天
作者简介:
王永军,高级工程师。中国计量测试学会真空计量专业委员会委员,《真空与低温》青年编委。获甘肃省自然科学奖三等奖1项。电子信箱: wyjlxlz@163.com。基金资助:
WANG Yongjun, ZHAO Chengxuan, LI Detian, WANG Yi, ZHANG Haiyan, LI Cunhui, ZHUANG Jianhong, ZHANG Huzhong. Progress and Development Proposals of Space Dust Detection[J]. Science and Technology Foresight, 2022, 1(1): 38-50.
王永军, 赵呈选, 李得天, 王鹢, 张海燕, 李存惠, 庄建宏, 张虎忠. 空间尘埃探测进展与发展建议[J]. 前瞻科技, 2022, 1(1): 38-50.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.qianzhankeji.cn/EN/10.3981/j.issn.2097-0781.2022.01.004
[1] |
Mann I, Meyer-Vernet N, Czechowski A. Dust in the planetary system: Dust interactions in space plasmas of the solar system[J]. Physics Reports, 2014, 536(1):1-39.
DOI URL |
[2] | Metzger P T, Lane J E, Immer C D, et al. Cratering and blowing soil by rocket engines during lunar landings[M]//Benaroya H. Lunar settlements. Arlington: CRC Press, 2010: 551-576. |
[3] | Grün E, Krüger H, Srama R. The dawn of dust astronomy[J]. Space Science Reviews, 2019, 215(7): https://doi.org/10.1007/s11214-019-0610-1. |
[4] | Criswell D R. Horizon-glow and the motion of lunar dust[M]//Grard R J L. Photon and particle interactions with surfaces in space. Dordrecht: D. Reidel Publishing Company, 1973: 545-556. |
[5] | Sasaki S, Igenbergs E, Münzenmayer R, et al. Mars Dust Counter (MDC) on board NOZOMI: Initial results[J]. COSPAR Colloquia Series, 2002, 15:176-180. |
[6] |
Li D, Wang Y, Zhang H, et al. In situ measurements of lunar dust at the Chang’e-3 landing site in the northern Mare Imbrium[J]. Journal of Geophysical Research: Planets, 2019, 124(8):2168-2177.
DOI URL |
[7] | Li D, Wang Y, Zhang H, et al. In situ investigations of dust above the lunar terminator at the Chang’e-3 landing site in the Mare Imbrium[J]. Geophysical Research Letters, 2020, 47(17):e2020GL089433. |
[8] |
Popel S I, Zelenyi L M, Golub A P, et al. Lunar dust and dusty plasmas: Recent developments, advances, and unsolved problems[J]. Planetary and Space Science, 2018, 156:71-84.
DOI URL |
[9] | Divine N. Five populations of interplanetary meteoroids[J]. Journal of Geophysical Research: Planets, 1993, 98(E9):17029-17048. |
[10] |
Staubach P, Grün E, Jehn R. The meteoroid environment near Earth[J]. Advances in Space Research, 1997, 19(2):301-308.
DOI URL |
[11] |
Dikarev V, Grün E, Baggaley J, et al. The new ESA meteoroid model[J]. Advances in Space Research, 2005, 35(7):1282-1289.
DOI URL |
[12] | Soja R H, Grün E, Strub P, et al. IMEM2: A meteoroid environment model for the inner solar system[J]. Astronomy & Astrophysics, 2019, 628: https://doi.org/10.1051/0004-6361/201834892. |
[13] | Colwell J E, Batiste S, Horányi M, et al. Lunar surface: Dust dynamics and regolith mechanics[J]. Reviews of Geophysics, 2007, 45(2): https://doi.org/10.1029/2005RG000184. |
[14] |
O’brien B J. Review of measurements of dust movements on the Moon during Apollo[J]. Planetary and Space Science, 2011, 59(14):1708-1726.
DOI URL |
[15] | Zook H A, Potter A E, Cooper B L. The lunar dust exosphere and Clementine lunar horizon glow[C]// Abstracts of the Lunar and Planetary Science Conference, 1995, 26:1577-1578. |
[16] |
Glenar D A, Stubbs T J, Hahn J M, et al. Search for a high-altitude lunar dust exosphere using Clementine navigational star tracker measurements[J]. Journal of Geophysical Research: Planets, 2014, 119(12):2548-2567.
DOI URL |
[17] |
Grava C, Stubbs T J, Glenar D A, et al. Absence of a detectable lunar nanodust exosphere during a search with LRO’s LAMP UV imaging spectrograph[J]. Geophysical Research Letters, 2017, 44(10):4591-4598.
DOI URL |
[18] | Feldman P D, Glenar D A, Stubbs T J, et al. Upper limits for a lunar dust exosphere from far-ultraviolet spectroscopy by LRO/LAMP[J]. Lcarus, 2014, 233:106-113. |
[19] |
Barker M K, Mazarico E, Mcclanahan T P, et al. Searching for lunar horizon glow with the lunar orbiter laser altimeter[J]. Journal of Geophysical Research: Planets, 2019, 124(11):2728-2744.
DOI |
[20] |
Horányi M, Sternovsky Z, Lankton M, et al. The Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission[J]. Space Science Reviews, 2014, 185(1):93-113.
DOI URL |
[21] |
Horányi M, Szalay J R, Kempf S, et al. A permanent, asymmetric dust cloud around the Moon[J]. Nature, 2015, 522(7556):324-632.
DOI URL |
[22] |
Szalay J R, Horányi M. The search for electrostatically lofted grains above the Moon with the Lunar Dust Experiment[J]. Geophysical Research Letters, 2015, 42(13):5141-5146.
DOI URL |
[23] |
Wooden D H, Cook A M, Colaprete A, et al. Evidence for a dynamic nanodust cloud enveloping the Moon[J]. Nature Geoscience, 2016, 9(9):665-668.
DOI |
[24] | Koschny D, Soja R H, Engrand C, et al. Interplanetary dust, meteoroids, meteors and meteorites[J]. Space Science Reviews, 2019, 215(4): https://doi.org/10.1007/s11214-019-0597-7. |
[25] |
Grün E, Zook H A, Baguhl M, et al. Discovery of Jovian dust streams and interstellar grains by the Ulysses spacecraft[J]. Nature, 1993, 362(6419):428-430.
DOI URL |
[26] |
Krüger H, Dikarev V, Anweiler B, et al. Three years of Ulysses dust data: 2005 to 2007[J]. Planetary and Space Science, 2010, 58(7):951-964.
DOI URL |
[27] | Gruen E, Fechtig H, Kissel J, et al. The Ulysses dust experiment[J]. Astronomy & Astrophysics Supplement Series, 1992, 92:411-423. |
[28] | Grün E, Fechtig H, Hanner M S, et al. The Galileo dust detector[J]. Space Science Reviews, 1992, 60(1):317-340. |
[29] | Thiessenhusen K-U, Krüger H, Spahn F, et al. Dust grains around Jupiter: The observations of the Galileo dust detector[J]. Lcarus, 2000, 144(1):89-98. |
[30] | Landis G A, Jenkins P P. Measurement of the settling rate of atmospheric dust on Mars by the MAE instrument on Mars Pathfinder[J]. Journal of Geophysical Research: Planets, 2000, 105(E1):1855-1857. |
[31] |
Srama R, Ahrens T J, Altobelli N, et al. The Cassini Cosmic Dust Analyzer[J]. Space Science Reviews, 2004, 114(1):465-518.
DOI URL |
[32] |
Srama R, Kempf S, Moragas-Klostermeyer G, et al. The cosmic dust analyser onboard Cassini: Ten years of discoveries[J]. CEAS Space Journal, 2011, 2(1):3-16.
DOI URL |
[33] |
Altobelli N, Postberg F, Fiege K, et al. Flux and composition of interstellar dust at Saturn from Cassini’s Cosmic Dust Analyzer[J]. Science, 2016, 352(6283):312-318.
DOI PMID |
[34] | Mozer F S, Agapitov O V, Bale S D, et al. Time domain structures and dust in the solar vicinity: Parker solar probe observations[J]. The Astrophysical Journal Supplement Series, 2020, 246(2): https://doi.org/10.3847/1538-4365/ab5e4b. |
[35] |
Kissel J, Brownlee D E, Büchler K, et al. Composition of comet Halley dust particles from Giotto observations[J]. Nature, 1986, 321(6067):336-337.
DOI URL |
[36] |
McDonnell J A M, Alexander W M, Burton W M, et al. Dust density and mass distribution near comet Halley from Giotto observations[J]. Nature, 1986, 321(6067):338-341.
DOI URL |
[37] |
Soderblom L A, Becker T L, Bennett G, et al. Observations of comet 19P/Borrelly by the miniature integrated camera and spectrometer aboard Deep Space 1[J]. Science, 2002, 296(5570):1087-1091.
PMID |
[38] |
Tsou P, Brownlee D E, Anderson J D, et al. Stardust encounters comet 81P/Wild 2[J]. Journal of Geophysical Research: Planets, 2004, 109(E12): doi: 10.1029/2004JE002317.
DOI |
[39] |
Tuzzolino A J, Economou T E, Mckibben R B, et al. Dust flux monitor instrument for the Stardust mission to comet Wild 2[J]. Journal of Geophysical Research: Planets, 2003, 108(E10): doi: 10.1029/2003JE002086.
DOI |
[40] | Srowig A. Trajectory sensor and readout electronics of a cosmic dust telescope[D]. Heidelberg: University of Heidelberg, 2005. |
[41] | Thomas P, A’hearn M, Belton M J S, et al. The nucleus of comet 9P/Tempel 1: Shape and geology from two flybys[J]. Lcarus, 2013, 222(2):453-466. |
[42] |
Dello Russo N, Vervack J R J, Lisse C M, et al. The volatile composition and activity of comet 103p/Hartley 2 during the EPOXI closest approach[J]. The Astrophysical Journal, 2011, 734(1): doi: 10.1088/2041-8205/734/1/L8.
DOI |
[43] |
Colangeli L, Lopez-Moreno J J, Palumbo P, et al. GIADA: The Grain Impact Analyser and Dust Accumulator for the Rosetta space mission[J]. Advances in Space Research, 2007, 39(3):446-450.
DOI URL |
[44] |
Della C V, Rotundi A, Fulle M, et al. GIADA: Shining a light on the monitoring of the comet dust production from the nucleus of 67P/Churyumov-Gerasimenko[J]. Astronomy & Astrophysics, 2015, 583: doi: 10.1051/0004-6361/201526208.
DOI |
[45] | 50th anniversary celebration of both Apollo 11 active experiments: Passive seismometer & dust detector temperatures over 21 days[EB/OL]. [2022-02-25]. https://nesf2019.arc.nasa.gov/abstract/nesf2019-014. |
[46] | Zhuang J, Kong F, Gu Z, et al. A design of in-situ Detector of Charged Lunar Dust (DCLD)[J]. Sensors and Actuators A: Physical, 2021, 320: https://doi.org/10.1016/j.sna.2021.112564. |
[47] | Zhao C, Wang Y, Li D, et al. A design of dust analyzer for future main belt comet exploration mission[J]. Advances in Space Research, 2022, https://doi.org/10.1016/j.asr.2022.02.035. |
[48] | 李得天, 习振华, 王永军, 等. 真空测试计量技术及其航天应用[J]. 真空科学与技术学报, 2021, 41(9):795-816. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京公网安备 11010802038735号