[1] |
吴祥明. 磁悬浮列车[M]. 上海: 上海科技出版社, 2003.
|
[2] |
张昆仑, 王滢, 董金文, 等. 高速磁浮铁路技术[M]. 北京: 中国铁道出版社有限公司, 2021.
|
[3] |
Yonezu T, Watanabe K, Suzuki E, et al. Study on electromagnetic force characteristics acting on levitation/guidance coils of a superconducting maglev vehicle system[J]. IEEE Transactions on Magnetics, 2017, 53(11), doi: 10.1109/INTMAG.2017.8007869.
|
[4] |
Deng Z G, Wang L, Li H T, et al. Dynamic studies of the HTS maglev transit system[J]. IEEE Transactions on Applied Superconductivity, 2021, 31(5), doi: 10.1109/TASC.2021.3052452.
|
[5] |
Zheng J, Sun R X, Li H T, et al. A manned hybrid maglev vehicle applying permanent magnetic levitation (PML) and superconducting magnetic levitation (SML)[J]. IEEE Transactions on Applied Superconductivity, 2020, 30(1), doi: 10.1109/TASC.2019.2902974.
|
[6] |
Xu J, Yu X, Li G C, et al. Analysis of the speed limit of Transrapid maglev train explored from the perspective of its suspension and guidance systems[J]. IEEE Access, 2023, 11: 14398-14408.
DOI
URL
|
[7] |
Ni F, Mu S Y, Kang J S, et al. Robust controller design for maglev suspension systems based on improved suspension force model[J]. IEEE Transactions on Transportation Electrification, 2021, 7(3): 1765-1779.
DOI
URL
|
[8] |
Liang D, Xiao S, Zhang K L, et al. Improved SEM current ringing suppressor for maglev trains[J]. IEEE Transactions on Transportation Electrification, 2023, 9(2): 2238-2254.
DOI
URL
|
[9] |
Jiang S H, Shen D, Zhang T B, et al. Nonlinear robust composite levitation control for high-speed EMS trains with input saturation and track irregularities[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11): 20323-20336.
DOI
URL
|
[10] |
Jang J Y, Kim Y J, Chang K S, et al. A research on design method and theoretical analysis of electromagnetic suspension system considering magnetic interface between coils[J]. IEEE Transactions on Applied Superconductivity, 2011, 21(3): 1523-1527.
DOI
URL
|
[11] |
Kusagawa S, Baba J, Shutoh K, et al. Multipurpose design optimization of EMS-type magnetically levitated vehicle based on genetic algorithm[J]. IEEE Transactions on Applied Superconductivity, 2004, 14(2): 1922-1925.
DOI
URL
|
[12] |
Kusagawa S, Baba J, Masada E. Weight reduction of EMS-type maglev vehicle with a novel hybrid control scheme for magnets[J]. IEEE Transactions on Magnetics, 2004, 40(4): 3066-3068.
DOI
URL
|
[13] |
Joo S J, Seo J H. Design and analysis of the nonlinear feedback linearizing control for an electromagnetic suspension system[J]. IEEE Transactions on Control Systems Technology, 1997, 5(1): 135-144.
DOI
URL
|
[14] |
Hwang Y J, Jang J J, Choi S, et al. A study on the shape of iron-core for a hybrid electro-magnetic suspension system[J]. IEEE Transactions on Applied Superconductivity, 2012, 22(3), doi: 10.1109/TASC.2011.2180280.
|
[15] |
Terai M, Igarashi M, Kusada S, et al. The R&D project of HTS magnets for the superconducting maglev[J]. IEEE Transactions on Applied Superconductivity, 2006, 16(2): 1124-1129.
DOI
URL
|
[16] |
蓝建中. 日本超导磁浮列车时速创纪录[J]. 城市轨道交通研究, 2015, 18(5): 134.
|
[17] |
Hu D Y, Feng X Y, Zhang Z H, et al. Study on the damping characteristics of superconducting electrodynamic suspension using a field-circuit-motion coupled model[C]// Proceedings of the 2021 13th International Symposium on Linear Drives for Industry Applications (LDIA). Piscataway: IEEE Press, 2021, doi: 10.1109/LDIA49489.2021.9505942.
|
[18] |
Watanabe K, Yoshioka H, Suzuki E, et al. A study of vibration control systems for superconducting maglev vehicles (vibration control of lateral and rolling motions)[J]. Journal of System Design and Dynamics, 2007, 1(3): 593-604.
DOI
URL
|
[19] |
Hoshino H, Suzuki E, Watanabe K, et al. Reduction of vibrations in maglev vehicles using active primary and secondary suspension control[J]. Quarterly Report of RTRI, 2008, 49(2): 113-118.
DOI
URL
|
[20] |
Nishijima S, Eckroad S, Marian A, et al. Superconductivity and the environment: A roadmap[J]. Superconductorence Science and Technology, 2013, 26(11), doi: 10.1088/0953-2048/26/11/113001.
|
[21] |
Cai Y, Ma G T, Wang Y Y, et al. Semianalytical calculation of superconducting electrodynamic suspension train using figure-eight-shaped ground coil[J]. IEEE Transactions on Applied Superconductivity, 2020, 30(5), doi: 10.1109/TASC.2020.2978423.
|
[22] |
Hu Y, Zeng J, Long Z. Analysis of dynamic characteristics of electrodynamic suspension train based on halbach permanent magnet array[C]// Proceedings of the 2019 Chinese Automation Congress (CAC). Piscataway: IEEE Press, 2019, doi: 10.1109/CAC48633.2019.8996743.
|
[23] |
Fang J, Montgomery D, Roderick L. A novel MagPipe pipeline transportation system using linear motor drives[J]. Proceedings of the IEEE, 2009, 97(11): 1848-1855.
DOI
URL
|
[24] |
Zhang Z, Shi L, Wang K, et al. Characteristics investigation of single-sided ironless pmlsm based on halbach array for medium-speed maglev train[J]. CES Transactions on Electrical Machines and Systems, 2017, 1(4): 375-382.
DOI
URL
|
[25] |
Kratz R, Post R F. A null-current electro-dynamic levitation system[J]. IEEE Transactions on Applied Superconductivity, 2002, 12(1): 930-932.
DOI
URL
|
[26] |
Luo C, Zhang K, Liang D, et al. Stability control of permanent magnet and electromagnetic hybrid halbach array electrodynamic suspension system[J]. The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2021, 40(4): 905-920.
DOI
URL
|
[27] |
Luo C, Zhang K L, Zhang W L, et al. 3D analytical model of permanent magnet and electromagnetic hybrid halbach array electrodynamic suspension system[J]. Journal of Electrical Engineering and Technology, 2020, 15(4): 1713-1721.
DOI
|
[28] |
王家素, 王素玉. 一种超导磁悬浮列车系统: 1408593A[P]. 2003-04-09.
|
[29] |
Wu M K, Ashburn J R, Torong C J, et al. Superconductivity at 93K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure[J]. Physical Review Letters, 1987, 58(9): 908-910.
PMID
|
[30] |
Ma G T, Gong T Y, Zhang H, et al. Experiment and simulation of REBCO conductor coils for an HTS linear synchronous motor[J]. IEEE Transactions on Applied Superconductivity, 2017, 27(4), doi: 10.1109/TASC.2017.2662601.
|
[31] |
Wen Y Y, Xin Y, Hong W, et al. Comparative study between electromagnet and permanent magnet rails for HTS maglev[J]. Superconductor Science and Technology, 2020, 33(3), doi: 10.1088/1361-6668/ab6fea.
|
[32] |
Wang W, Deng Z G, Chen L, et al. Magnetic characteristics of Nd-Fe-B permanent magnets at high temperature and the effect of temperature on high-temperature superconducting levitation performance[J]. IEEE Magnetics Letters, 2020, 11: doi: 10.1109/LMAG.2020.2999857.
|
[33] |
Wang S, Wang J, Wang X, et al. The man-loading high-temperature superconducting maglev test vehicle[J]. IEEE Transactions on Applied Superconductivity, 2003, 13(2): 2134-2137.
DOI
URL
|
[34] |
Sun R X, Zheng J, Zheng B T, et al. Study on the magnetic field inhomogeneity of a halbach permanent magnet guideway due to different defects[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(1), doi: 10.1109/TASC.2015.2501100.
|