前瞻科技 ›› 2025, Vol. 4 ›› Issue (4): 64-82.DOI: 10.3981/j.issn.2097-0781.2025.04.005

• 综述与述评 • 上一篇    下一篇

量子计算机的现状与发展

王正安1(), 时运豪2,3,4,5, 范桁1,2,3,4,5,()   

  1. 1 北京量子信息科学研究院北京容错量子计算重点实验室北京 100193
    2 中国科学院物理研究所北京凝聚态物理国家研究中心北京 100190
    3 中国科学院大学物理科学学院北京 100049
    4 合肥国家实验室合肥 230088
    5 松山湖材料实验室东莞 523803
  • 收稿日期:2025-09-01 修回日期:2025-10-31 出版日期:2025-12-20 发布日期:2025-12-30
  • 通讯作者:
  • 作者简介:王正安,助理研究员。主要从事量子算法、量子人工智能、量子多体等研究。先后获得中国博士后基金特别资助(站前)与国家自然科学基金理论物理专项(博士后)资助,国家自然科学基金集成项目课题负责人。主要参与研发的“量子金融云平台”获得中国人民银行设立的金融科技发展二等奖。在Nature Communications、npj Quantum Information等期刊发表学术论文10余篇。电子信箱:zawang@baqis.ac.cn
    范桁,研究员。固态量子信息与计算实验室主任,北京量子信息科学研究院智能量子计算与模拟团队负责人。国家“万人计划”科技创新领军人才;科技部重点领域创新团队负责人;国家自然科学基金委员会创新研究群体负责人;周培源物理奖获得者;享受国务院政府特殊津贴专家。主要研究方向为量子计算和量子信息处理(聚焦超导量子计算与量子模拟理论与实验研究、量子计算云平台及量超智融合)。电子信箱:hfan@iphy.ac.cn

Current State and Prospects of Quantum Computers

WANG Zheng'an1(), SHI Yunhao2,3,4,5, FAN Heng1,2,3,4,5,()   

  1. 1 1. Beijing Key Laboratory of Fault-Tolerant Quantum Computing, Beijing Academy of Quantum Information Sciences, Beijing 100193, China
    2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
    3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
    4 Hefei National Laboratory, Hefei 230088, China
    5 Songshan Lake Materials Laboratory, Dongguan 523803, China
  • Received:2025-09-01 Revised:2025-10-31 Online:2025-12-20 Published:2025-12-30
  • Contact:

摘要:

量子计算是一场信息和计算领域的深刻变革,有望重塑未来的计算范式。文章追溯了量子计算从理论奠基与思想萌芽、算法突破、实验探索与硬件起步到当前“含噪声的中等规模量子”时代的4个发展阶段,系统阐述了量子比特、量子叠加和量子纠缠等核心物理原理。详细梳理并比较了超导、离子阱、光量子及中性原子的主要硬件研发技术路线,分析了其在规模、质量和连接性上的不同权衡。在此基础上,深入探讨了量子计算面临的三大核心挑战:对抗环境噪声与退相干、实现高开销的量子纠错及解决系统扩展的工程瓶颈。进一步聚焦产业化进程,剖析了量子计算云平台的发展模式,并重点论述了从松耦合到“量超融合”的量子-经典混合计算架构,认为这是通往实用性量子优势的关键路径。立足全球趋势与我国国情,提出了以容错为长远目标、软硬件生态协同发展、加速量超融合落地等发展建议,以期为我国在该领域的战略规划提供参考。

关键词: 量子计算, 量子调控, 量子云计算, 量子-经典混合, 量超融合

Abstract:

Quantum computing is a profound revolution in the fields of information and computing poised to reshape the future paradigm of computation. This paper first traced the four developmental stages of quantum computing, from its theoretical origins and algorithmic breakthroughs to the current noisy intermediate-scale quantum (NISQ) era. It also systematically elaborated on the core physical principles such as qubits, superposition, and entanglement. Subsequently, the paper detailed and compared the major hardware technology routes, including superconducting systems, ion traps, photonics, and neutral atoms, analyzing their respective trade-offs in terms of scale, quality, and connectivity. Building on this, the paper delved into the three core challenges facing quantum computing: combating environmental noise and decoherence, implementing high-overhead quantum error correction, and overcoming the engineering bottlenecks of system scalability. The paper further focused on the industrialization process and analyzed the development models of quantum computing cloud platforms, emphasizing the quantum and classical hybrid computing architecture, which is evolving from loosely-coupled models towards quantum-high performance computing (HPC) hybrid. This is identified as a critical path toward achieving practical quantum advantage. Finally, based on global trends and China’s national context, the paper put forward several development recommendations. These include establishing fault tolerance as a long-term goal, promoting the synergistic development of the hardware and software ecosystem, and accelerating the implementation of a quantum-HPC hybrid, aiming to provide a reference for the nation’s strategic planning in this field.

Key words: quantum computing, quantum control, quantum cloud computing, quantum and classical hybrid, quantum-HPC hybrid