Science and Technology Foresight ›› 2022, Vol. 1 ›› Issue (4): 81-98.DOI: 10.3981/j.issn.2097-0781.2022.04.006
• Review and Commentary • Previous Articles Next Articles
ZHU Qiju1(), WANG Xiaoxu2, MEI Chunbo1, YANG Pengxiang1, LU Qianbo3
Received:
2022-10-26
Revised:
2022-11-04
Online:
2022-12-20
Published:
2023-01-17
朱启举1(), 王小旭2, 梅春波1, 杨鹏翔1, 卢乾波3
作者简介:
朱启举,研究员,西安现代控制技术研究所副总工程师,惯导事业部主任。中国兵器科技带头人。主要研究方向为智能化弹药惯性导航及组合导航技术。获国家科学技术进步奖二等奖1项,国防科学技术进步奖二等奖1项。发表论文10余篇,获授权国防专利20余项。电子信箱:zhuqiju971071@sina.com。
ZHU Qiju, WANG Xiaoxu, MEI Chunbo, YANG Pengxiang, LU Qianbo. Technology Status and Application Outlook of Micro-Opto-Electro-Mechanical System Accelerometers[J]. Science and Technology Foresight, 2022, 1(4): 81-98.
朱启举, 王小旭, 梅春波, 杨鹏翔, 卢乾波. 微光机电系统加速度计技术现状与应用展望[J]. 前瞻科技, 2022, 1(4): 81-98.
性能指标 | MEMS加速度计 | MOEMS加速度计 | |||
---|---|---|---|---|---|
电容式 | 压阻式 | 压电式 | 谐振式 | ||
测量原理 | 板间电容变化 | 压阻效应 | 压电效应 | 改变二阶系统固有频率 | 加速度→位移→光学读出位移 |
位移测量精度 | 亚纳米级 | 微米至纳米级 | 亚纳米级 | 亚纳米级 | 纳米至飞米级 |
噪声等效加速度 | ~10-6 gHz-1/2 | 10-3~10-6 gHz-1/2 | 10-6~10-7 gHz-1/2 | 10-6~10-7 gHz-1/2 | 10-3~10-7gHz-1/2(取决于不同光学原理和机械结构设计) |
优点 | 工艺成熟,易集成,精度适中 | 结构和读出电路简单 | 较高的灵敏度和大带宽 | 灵敏度较高,数字输出,易集成 | 超高灵敏度潜力,抗电磁干扰,响应快 |
缺点 | 电磁干扰,量程较小 | 灵敏度低,温度系数大 | 低频特性差,材料不易集成 | 带宽有限,直流测量困难 | 较低技术成熟度,异构集成难度大 |
性能指标 | MEMS加速度计 | MOEMS加速度计 | |||
---|---|---|---|---|---|
电容式 | 压阻式 | 压电式 | 谐振式 | ||
测量原理 | 板间电容变化 | 压阻效应 | 压电效应 | 改变二阶系统固有频率 | 加速度→位移→光学读出位移 |
位移测量精度 | 亚纳米级 | 微米至纳米级 | 亚纳米级 | 亚纳米级 | 纳米至飞米级 |
噪声等效加速度 | ~10-6 gHz-1/2 | 10-3~10-6 gHz-1/2 | 10-6~10-7 gHz-1/2 | 10-6~10-7 gHz-1/2 | 10-3~10-7gHz-1/2(取决于不同光学原理和机械结构设计) |
优点 | 工艺成熟,易集成,精度适中 | 结构和读出电路简单 | 较高的灵敏度和大带宽 | 灵敏度较高,数字输出,易集成 | 超高灵敏度潜力,抗电磁干扰,响应快 |
缺点 | 电磁干扰,量程较小 | 灵敏度低,温度系数大 | 低频特性差,材料不易集成 | 带宽有限,直流测量困难 | 较低技术成熟度,异构集成难度大 |
性能指标与潜在应用场景 | 基于直接光强调制 | 基于光的波动性 | 基于光与物质相互作用 | ||
---|---|---|---|---|---|
干涉腔式 | FBG式 | 光子晶体式 | |||
光学位移 测量精度 | 微米至纳米级 | 亚纳米级 | 纳米级 | 亚纳米级 | 高至飞米级 |
噪声等效 加速度 | 10-3~10-9 gHz-1/2(取决于机械结构设计) | 10-6~10-9 gHz-1/2 | 亚10-6 gHz-1/2 | 亚10-6 gHz-1/2 | 高至亚10-9 gHz-1/2 |
特点 | 结构简单,成本低廉,灵敏度适中 | 高集成度,高灵敏度 | 多点复用,多功能,灵敏度适中 | 高集成度,高灵敏度 | 较低技术成熟度,超高灵敏度 |
潜在应用 场景 | 从日常应用到地球物理应用 | 惯性导航,地球物理应用 | 日常应用,装备 健康监测 | 惯性导航 | 惯性导航,地球物理应用 |
性能指标与潜在应用场景 | 基于直接光强调制 | 基于光的波动性 | 基于光与物质相互作用 | ||
---|---|---|---|---|---|
干涉腔式 | FBG式 | 光子晶体式 | |||
光学位移 测量精度 | 微米至纳米级 | 亚纳米级 | 纳米级 | 亚纳米级 | 高至飞米级 |
噪声等效 加速度 | 10-3~10-9 gHz-1/2(取决于机械结构设计) | 10-6~10-9 gHz-1/2 | 亚10-6 gHz-1/2 | 亚10-6 gHz-1/2 | 高至亚10-9 gHz-1/2 |
特点 | 结构简单,成本低廉,灵敏度适中 | 高集成度,高灵敏度 | 多点复用,多功能,灵敏度适中 | 高集成度,高灵敏度 | 较低技术成熟度,超高灵敏度 |
潜在应用 场景 | 从日常应用到地球物理应用 | 惯性导航,地球物理应用 | 日常应用,装备 健康监测 | 惯性导航 | 惯性导航,地球物理应用 |
[1] |
Lu Q, Wang Y, Wang X, et al. Review of micromachined optical accelerometers: From mg to sub-μg[J]. Opto-Elec-tronic Advances, 2021, doi: 10.29026/oea.2021.200045.
DOI |
[2] |
Yazdi N, Ayazi F, Najafi K. Micromachined inertial sensors[J]. Proceedings of the IEEE, 1998, 86(8): 1640-1659.
DOI URL |
[3] | Liu H, Pike W T, Dou G. Design, fabrication and characterization of a micro-machined gravity gradiometer suspension[C]// IEEE Sensors 2014 Proceedings. Piscataway: IEEE Press, 2014: 1611-1614. |
[4] |
da Costa Antunes P F, Lima H F T, Alberto N J, et al. Optical fiber accelerometer system for structural dynamic monitoring[J]. IEEE Sensors Journal, 2009, 9(11): 1347-1354.
DOI URL |
[5] |
Guo T, Shao L, Tam H Y, et al. Tilted fiber grating accelerometer incorporating an abrupt biconical taper for cladding to core recoupling[J]. Optics Express, 2009, doi: 10.1364/OE.17.020651.
DOI |
[6] |
Abbaspour-Sani E, Huang R S, Kwok C Y. A novel optical accelerometer[J]. IEEE Electron Device Letters, 1995, 16(5): 166-168.
DOI URL |
[7] |
Plaza J A, Llobera A, Dominguez C, et al. BESOI-based integrated optical silicon accelerometer[J]. Journal of Microelectromechanical Systems, 2004, 13(2): 355-364.
DOI URL |
[8] |
Mustafazade A, Pandit M, Zhao C, et al. A vibrating beam MEMS accelerometer for gravity and seismic measurements[J]. Scientific Reports, 2020, doi: 10.1038/s41598-020-67046-x.
DOI |
[9] |
Duan Y, Wei X, Wang H, et al. Design and numerical performance analysis of a microgravity accelerometer with quasi-zero stiffness[J]. Smart Materials and Structures, 2020, doi: 10.1088/1361-665X/ab8838.
DOI |
[10] | Jeong Y, Daruwalla A, Wen H, et al. An out-of-plane “hinge-shaped” nano-gap accelerometer with high sensitivity and wide bandwidth[C]// 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS). Piscataway:IEEE Press, 2017: 2131-2134. |
[11] |
Zhang H, Wei X, Ding Y, et al. A low noise capacitive MEMS accelerometer with anti-spring structure[J]. Sensors and Actuators A: Physical, 2019, 296: 79-86.
DOI |
[12] |
Middlemiss R P, Samarelli A, Paul D J, et al. Measurement of the earth tides with a MEMS gravimeter[J]. Nature, 2016, 531(7596): 614-617.
DOI URL |
[13] |
Tang S, Liu H, Yan S, et al. A high-sensitivity MEMS gravimeter with a large dynamic range[J]. Microsystems & Nanoengineering, 2019, doi: 10.1038/s41378-019-0089-7.
DOI |
[14] |
Cooper E B, Post E R, Griffith S, et al. High-resolution micromachined interferometric accelerometer[J]. Applied Physics Letters, 2000, 76(22): 3316-3318.
DOI URL |
[15] |
Loh N C, Schmidt M A, Manalis S R. Sub-10 cm/sup 3/ interferometric accelerometer with nano-g resolution[J]. Journal of Microelectromechanical Systems, 2002, 11(3): 182-187.
DOI URL |
[16] |
Hall N A, Okandan M, Littrell R, et al. Micromachined accelerometers with optical interferometric read-out and integrated electrostatic actuation[J]. Journal of Microelectromechanical Systems, 2008, 17(1): 37-44.
DOI PMID |
[17] |
Williams R P, Hord S K, Hall N A. Optically read displacement detection using phase-modulated diffraction gratings with reduced zeroth-order reflections[J]. Applied Physics Letters, 2017, doi: 10.1063/1.4979541.
DOI |
[18] |
Gerges A S, Newson T P, Jackson D A. Practical fiber-optic-based submicro-g accelerometer free from source and environmental perturbations[J]. Optics Letters, 1989, 14(20): 1155-1157.
PMID |
[19] |
Davies E, George D S, Gower M C, et al. MEMS Fabry-Pérot optical accelerometer employing mechanical amplification via a V-beam structure[J]. Sensors and Actuators A: Physical, 2014, 215: 22-29.
DOI URL |
[20] |
Zhao Z, Yu Z, Chen K, et al. A fiber-optic Fabry-Perot accelerometer based on high-speed white light interferometry demodulation[J]. Journal of Lightwave Technology, 2018, 36(9): 1562-1567.
DOI URL |
[21] |
Lin Q, Chen L, Li S, et al. A high-resolution fiber optic accelerometer based on intracavity phase-generated carrier (PGC) modulation[J]. Measurement Science and Technology, 2011, doi: 10.1088/0957-0233/22/1/015303.
DOI |
[22] |
Berkoff T A, Kersey A D. Experimental demonstration of a fiber Bragg grating accelerometer[J]. IEEE Photonics Technology Letters, 1996, 8(12): 1677-1679.
DOI URL |
[23] |
Weng Y, Qiao X, Guo T, et al. A robust and compact fiber Bragg grating vibration sensor for seismic measurement[J]. IEEE Sensors Journal, 2012, 12(4): 800-804.
DOI URL |
[24] | Helan R, Urban F Jr, Mikel B, et al. Preparation and measurement of TFBG based vibration sensor[C]// Second International Conference on Applications of Optics and Photonics. Bellingham: SPIE, 2014, 9286: 581-586. |
[25] |
Linze N, Tihon P, Verlinden O, et al. Development of a multi-point polarization-based vibration sensor[J]. Optics Express, 2013, doi: 10.1364/OE.21.005606.
DOI |
[26] |
Basumallick N, Chatterjee I, Biswas P, et al. Fiber Bragg grating accelerometer with enhanced sensitivity[J]. Sensors and Actuators A: Physical, 2012, 173(1): 108-115.
DOI URL |
[27] | Mita A, Yokoi I. Fiber Bragg grating accelerometer for buildings and civil infrastructures[C]// Proceedings of SPIE-The International Society for Optical Engineering. Bellingham: SPIE, 2001: 479-486. |
[28] |
Gutiérrez N, Galvín P, Lasagni F. Low weight additive manufacturing FBG accelerometer: Design, characterization and testing[J]. Measurement, 2018, 117: 295-303.
DOI URL |
[29] | Jaksic Z, Radulovic K, Tanaskovic D. MEMS accelerometer with all-optical readout based on twin-defect photonic crystal waveguide[C]// 2004 24th International Conference on Microelectronics. Piscataway: IEEE Press, 2044: 231-234. |
[30] |
Sheikhaleh A, Abedi K, Jafari K. A proposal for an optical mems accelerometer relied on wavelength modulation with one dimensional photonic crystal[J]. Journal of Lightwave Technology, 2016, 34(22): 5244-5249.
DOI URL |
[31] |
Sheikhaleh A, Abedi K, Jafari K. An optical mems accelerometer based on a two-dimensional photonic crystal add-drop filter[J]. Journal of Lightwave Technology, 2017, 35(14): 3029-3034.
DOI URL |
[32] |
Ritchie R H, Marusak A L. The surface plasmon dispersion relation for an electron gas[J]. Surface Science, 1966, 4(3): 234-240.
DOI URL |
[33] |
Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 1998, 391(6668): 667-669.
DOI URL |
[34] |
Nemati A, Wang Q, Hong M, et al. Tunable and reconfi-gurable metasurfaces and metadevices[J]. Opto-Electronic Advances, 2018, doi: 10.29026/oea.2018.180009.
DOI |
[35] |
Carr D W, Sullivan J P, Friedmann T A. Laterally deformable nanomechanical zeroth-order gratings: Anomalous diffraction studied by rigorous coupled-wave analysis[J]. Optics Letters, 2003, doi: 10.1364/ol.28.001636.
DOI |
[36] | Keeler B E N, Bogart G R, Carr D W. Laterally deformable optical NEMS grating transducers for inertial sensing applications[C]//Proceedings of SPIE 5592, Nanofabrication:Technologies, Devices, and Applications. Bellingham: SPIE, 2005, 5592: 306-312. |
[37] | Krishnamoorthy U, Olsson R H, Bogart G R, et al. In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor[J]. Sensors and Actuators A: Physical, 2008, 145-146: 283-290. |
[38] |
Krause A G, Winger M, Blasius T D, et al. A high-resolution microchip optomechanical accelerometer[J]. Nature Photonics, 2012, 6(11): 768-772.
DOI URL |
[39] |
Eichenfield M, Camacho R, Chan J, et al. A picogram- and nanometre-scale photonic-crystal optomechanical cavity[J]. Nature, 2009, 459(7246): 550-555.
DOI URL |
[40] |
Lin Q, Rosenberg J, Jiang X, et al. Mechanical oscillation and cooling actuated by the optical gradient force[J]. Physical Review Letters, 2009, doi: 10.1103/PhysRevLett.103.103601.
DOI |
[41] |
Safavi-Naeini A H, Gröblacher S, Hill J T, et al. Squeezed light from a silicon micromechanical resonator[J]. Nature, 2013, 500(7461): 185-189.
DOI URL |
[42] |
Armata F, Latmiral L, Plato A D K, et al. Quantum limits to gravity estimation with optomechanics[J]. Physical Review A, 2017, doi: 10.1103/PhysRevA.96.043824.
DOI |
[43] |
Zobenica Ž, van der Heijden R W, Petruzzella M, et al. Integrated nano-opto-electro-mechanical sensor for spectrometry and nanometrology[J]. Nature Communications, 2017, doi: 10.1038/s41467-017-02392-5.
DOI |
[44] |
Huang Y, Flor Flores J G, Li Y, et al. A chip-scale oscillation‐mode optomechanical inertial sensor near the thermodynamical limits[J]. Laser & Photonics Reviews, 2020, doi: 10.1002/lpor.201800329.
DOI |
[45] |
Yao B, Feng L, Wang X, et al. Design of out-of-plane moems accelerometer with subwavelength gratings[J]. IEEE Photonics Technology Letters, 2014, 26(10): 1027-1030.
DOI URL |
[46] |
Snadden M, McGuirk J, Bouyer P, et al. Measurement of the earth,s gravity gradient with an atom interferometer-based gravity gradiometer[J]. Physical Review Letters, 1998, 81(5): 971-974.
DOI URL |
[47] |
Peters A, Chung K Y, Chu S. High-precision gravity measurements using atom interferometry[J]. Metrologia, 2001, 38(1): 25-61.
DOI URL |
[48] |
McGuirk J M, Foster G T, Fixler J B, et al. Sensitive absolute-gravity gradiometry using atom interferometry[J]. Physical Review A, 2002, doi: 10.1103/PhysRevA.65.033608.
DOI |
[49] |
Arvanitaki A, Geraci A A. Detecting high-frequency gravitational waves with optically levitated sensors[J]. Physical Review Letters, 2013, doi: 10.1103/PhysRevLett.110.071105.
DOI |
[50] |
Gietka K, Mivehvar F, Ritsch H. Supersolid-based gravimeter in a ring cavity[J]. Physical Review Letters, 2019, doi: 10.1103/PhysRevLett.122.190801.
DOI |
[51] |
Purdy T P, Peterson R W, Regal C A. Observation of radiation pressure shot noise on a macroscopic object[J]. Science, 2013, 339(6121): 801-804.
DOI PMID |
[52] |
Abend S, Gebbe M, Gersemann M, et al. Atom-chip fountain gravimeter[J]. Physical Review Letters, 2016, 117(20), doi: 10.1103/PhysRevLett.117.203003.
DOI |
[53] | Bao Y L, Cervantes F G, Balijepalli A, et al. An optomechanical accelerometer with a high-finesse hemispherical optical cavity[C]// 2016 IEEE International Symposium on Inertial Sensors and Systems. Piscataway: IEEE Press, 2016: 105-108. |
[54] |
Li Y L, Barker P F. Characterization and testing of a micro-g whispering gallery mode optomechanical accelerometer[J]. Journal of Lightwave Technology, 2018, 36(18): 3919-3926.
DOI URL |
[55] |
Wei X, Sheng J, Yang C, et al. Controllable two-membrane-in-the-middle cavity optomechanical system[J]. Physical Review A, 2019, doi: 10.1103/PhysRevA.99.023851.
DOI |
[56] | 尚克军, 刘飞, 孙刚, 等. 飞航导弹用小型高精度加速度计技术综述[J]. 飞航导弹, 2021(6): 133-138. |
[57] | 秦和平, 于兰萍. 国内外惯性加速度计发展综述[C]// 中国航天电子技术研究院科学技术委员会2020年学术年会论文集. 北京: 中国航天电子技术研究院科学技术委员会, 2020: 187-201. |
No related articles found! |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 991
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 504
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京公网安备 11010802038735号