Science and Technology Foresight ›› 2025, Vol. 4 ›› Issue (3): 84-96.DOI: 10.3981/j.issn.2097-0781.2025.03.008
• Review and Commentary • Previous Articles Next Articles
XUE Dawei1(
), ZHONG Yishun1, HE Maofeng1, BAO Chengru1, LIU Xianlin2, YAN Qiang3, SHAO Yu2, LÜ Xilin1,†(
)
Received:2025-02-19
Revised:2025-04-22
Online:2025-09-20
Published:2025-10-17
Contact:
†
薛大为1(
), 钟一顺1, 何茂丰1, 鲍成儒1, 刘先林2, 闫强3, 邵羽2, 吕玺琳1,†(
)
通讯作者:
†
作者简介:薛大为,特聘研究员,博士研究生导师。中国土木工程学会土力学及岩土工程分会会青年工作委员会委员,上海市力学学会岩土力学专委会委员,Biogeotechnics、《应用基础与工程科学学报》青年编委。主要从事高阶连续体理论及岩土本构关系、材料稳定性分析理论、跨尺度数值模拟方法的研究。获博士研究生国家奖学金、中冶集团科技进步奖一等奖、同济大学优秀博士学位论文,并入选上海市领军(海外)人才计划。发表论文30余篇。授权国际、国内专利6件,登记国家软件著作权5件。电子信箱:daweixue@tongji.edu.cn。基金资助:XUE Dawei, ZHONG Yishun, HE Maofeng, BAO Chengru, LIU Xianlin, YAN Qiang, SHAO Yu, LÜ Xilin. Research Progress and Development Recommendations on Key Technologies for Long-term Stability and Safety Assurance of Modern Canal Slopes[J]. Science and Technology Foresight, 2025, 4(3): 84-96.
薛大为, 钟一顺, 何茂丰, 鲍成儒, 刘先林, 闫强, 邵羽, 吕玺琳. 现代运河岸坡长期稳定性及安全保障关键技术研究进展与发展建议[J]. 前瞻科技, 2025, 4(3): 84-96.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.qianzhankeji.cn/EN/10.3981/j.issn.2097-0781.2025.03.008
| 案例 | 灾害原因 |
|---|---|
| 引江济淮工程 | 膨胀土和崩解岩 |
| 平陆运河马道枢纽基坑 | 软硬夹层、风化层 |
| 苏南运河陵口段 | 粉砂土层在动水压力下易发生流土、管涌 |
| 湛江引调水工程 | 全风化砂岩与粉质黏土交错分布,开挖困难 |
| 苏伊士运河 | 沙漠和基岩交界处跨地貌单元处稳定性差异巨大 |
| 巴拿马运河 | 玄武岩、沉积岩等火成岩软硬不一,多次出现滑坡事故 |
Table 1 Typical cases of slope failure induced by geotechnical variability in domestic and international projects
| 案例 | 灾害原因 |
|---|---|
| 引江济淮工程 | 膨胀土和崩解岩 |
| 平陆运河马道枢纽基坑 | 软硬夹层、风化层 |
| 苏南运河陵口段 | 粉砂土层在动水压力下易发生流土、管涌 |
| 湛江引调水工程 | 全风化砂岩与粉质黏土交错分布,开挖困难 |
| 苏伊士运河 | 沙漠和基岩交界处跨地貌单元处稳定性差异巨大 |
| 巴拿马运河 | 玄武岩、沉积岩等火成岩软硬不一,多次出现滑坡事故 |
| 岸坡岩土体类型 | 面临问题 | 防护措施 |
|---|---|---|
| 崩解岩、风化岩等较软弱岩石 | 高温季节降雨导致浅层温差过大,软岩发生快速风化 | 有机基材喷播植草技术 |
| 膨胀土 | 易吸水膨胀失水收缩,导致边坡变形 | 非膨胀黏性土或水泥改性土换填,双层结构防护方案 |
| 冻土 | 冻胀破坏风险高,长期冻融循环引发结构开裂 | 土工格室,铰接模压混凝土结构 |
| 软黏土 | 天然强度低,加固桩作用有限 | 石灰柱加固 |
| 表层砂土 | 砂土结构疏松,黏聚力低,抗冲刷能力差,易受水流侵蚀 | 聚氨酯型生态稳定剂与砂土混合,生成固化膜包裹砂粒 |
| 砂壤土、壤土 | 土体松散易冲,水位变化导致干湿交替,冲刷剧烈 | 植被护坡,刚-柔协同护坡 |
Table 2 Slope types with special geotechnical conditions and their protection measures
| 岸坡岩土体类型 | 面临问题 | 防护措施 |
|---|---|---|
| 崩解岩、风化岩等较软弱岩石 | 高温季节降雨导致浅层温差过大,软岩发生快速风化 | 有机基材喷播植草技术 |
| 膨胀土 | 易吸水膨胀失水收缩,导致边坡变形 | 非膨胀黏性土或水泥改性土换填,双层结构防护方案 |
| 冻土 | 冻胀破坏风险高,长期冻融循环引发结构开裂 | 土工格室,铰接模压混凝土结构 |
| 软黏土 | 天然强度低,加固桩作用有限 | 石灰柱加固 |
| 表层砂土 | 砂土结构疏松,黏聚力低,抗冲刷能力差,易受水流侵蚀 | 聚氨酯型生态稳定剂与砂土混合,生成固化膜包裹砂粒 |
| 砂壤土、壤土 | 土体松散易冲,水位变化导致干湿交替,冲刷剧烈 | 植被护坡,刚-柔协同护坡 |
| [1] | Ozturk U, Bozzolan E, Holcombe E A, et al. How climate change and unplanned urban sprawl bring more landslides[J]. Nature, 2022, 608(7922): 262-265. |
| [2] | 张楚汉, 王光谦, 李铁键. 变化环境下城市暴雨致灾防御对策与建议[J]. 中国科学院院刊, 2022, 37(8): 1126-1131. |
| Zhang C H, Wang G Q, Li T J. Prevention countermeasures and suggestions for urban rainstorm disasters under changing environment[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(8): 1126-1131. (in Chinese) | |
| [3] |
陆大道. 建设经济带是经济发展布局的最佳选择——长江经济带经济发展的巨大潜力[J]. 地理科学, 2014, 34(7): 769-772.
DOI |
| Lu D D. Economic belt construction is the best choice of economic development layout: The enormous potential for the Changjiang River economic belt[J]. Geographical Science, 2014, 34(7): 769-772. (in Chinese) | |
| [4] | 宁武. 平陆运河建设理念与方案探讨[J]. 水利水运工程学报, 2023(2): 162-168. |
| Ning W. Discussion on the construction concept and scheme of Pinglu Canal[J]. Hydro-Science and Engineering, 2023(2): 162-168. (in Chinese) | |
| [5] |
邓铭江. 中国西北“水三线”空间格局与水资源配置方略[J]. 地理学报, 2018, 73(7): 1189-1203.
DOI |
| Deng M J. “Three Water Lines” strategy: Its spatial patterns and effects on water resources allocation in Northwest China[J]. Acta Geographica Sinica, 2018, 73(7): 1189-1203. (in Chinese) | |
| [6] | Chen J, Liang D, Zhang S, et al. Shale and mudstone: Essential source rocks in the proterozoic to Paleozoic Marine Basins in China[J]. Acta Geologica Sinica, 2013, 87(7): 905-921. |
| [7] | Wang Y, Ye F, Li Y J, et al. Seepage response along with fine particle migration of a loose soil slope under rainfall infiltration[J]. International Journal of Geomechanics, 2025, 25(1), doi: 10.1061/ijgnai.gmeng-10234. |
| [8] | Zhou X P, Wei X, Liu C, et al. Three-dimensional stability analysis of bank slopes with reservoir drawdown based on rigorous limit equilibrium method[J]. International Journal of Geomechanics, 2020, 20(12), doi: 10.1061/(asce)gm.1943-5622.0001877. |
| [9] | Wang Y G, Kuang S F, Su J L. Critical caving erosion width for cantilever failures of river bank[J]. International Journal of Sediment Research, 2016, 31(3): 220-225. |
| [10] | Weiss S F, Higdon J J L. Dynamics of meandering rivers in finite-length channels: Linear theory[J]. Journal of Fluid Mechanics, 2022, 938, doi: 10.1017/jfm.2022.131. |
| [11] | Sun S R, Li K, Le H L, et al. Study on the deterioration characteristics of greenschist under hydrochemical action and the disaster-causing mechanism in slope[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(8), doi: 10.1007/s10064-022-02819-4. |
| [12] | 贾官伟, 詹良通, 陈云敏. 水位骤降对边坡稳定性影响的模型试验研究[J]. 岩石力学与工程学报, 2009, 28(9): 1798-1803. |
| Jia G W, Zhan L T, Chen Y M. Model test study of slope instability induced by rapid drawdown of water level[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(9): 1798-1803. (in Chinese) | |
| [13] | 朱洵, 李国英, 蔡正银, 等. 湿干循环下膨胀土渠道边坡的破坏模式及稳定性[J]. 农业工程学报, 2020, 36(4): 159-67. |
| Zhu X, Li G Y, Cai Z Y, et al. Failure modes and slope stability of expansive soil canal under wet-dry cycles[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(4): 159-167. (in Chinese) | |
| [14] | 吕玺琳, 钟启锋, 颜建春, 等. 不同初始饱和度条件下高液限滑带土环剪试验[J]. 工程地质学报, 2024, 32(2): 370-377. |
| Lü X L, Zhong Q F, Yan J C, et al. Ring shear test of high liquid limit sliding zone soil under different initial saturation[J]. Journal of Engineering Geology, 2024, 32(2): 370-377. (in Chinese) | |
| [15] | 张家瑞, 刘先林, 吕龙, 等. 地震作用下高桩码头岸坡整体稳定性拟静力分析[J]. 岩土工程学报, 2024, 46(增刊2): 205-209. |
| Zhang J R, Liu X L, Lü L, et al. Pseudo-static analysis of overall stability of slopes of high pile wharves subjected to earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(Suppl 2): 205-209. (in Chinese) | |
| [16] | Sun G H, Lin S, Cheng S G, et al. Mechanisms of interaction between an arch dam and abutment slope using physical model tests[J]. Rock Mechanics and Rock Engineering, 2018, 51(8): 2483-2504. |
| [17] | 王子一, 吴桂义, 罗畅, 等. 多次爆破振动下陡边坡振动响应及稳定性研究[J]. 爆破, 2023, 40(3): 158-169, 176. |
| Wand Z Y, Wu G Y, Luo C, et al. Study on vibration response and stability of steep slope under multiple blasting vibrations[J]. Blasting, 2023, 40(3): 158-169, 176. (in Chinese) | |
| [18] | Wei W, Chen L D, Zhang H D, et al. Effects of crop rotation and rainfall on water erosion on a gentle slope in the hilly loess area, China[J]. Catena, 2014, 123: 205-214. |
| [19] | Liu S S, Li J, Lü S M, et al. Deformation characteristics of root-reinforced soil under traffic induced cyclic loading[J]. Transportation Geotechnics, 2024, 49, doi: 10.1016/j.trgeo.2024.101424. |
| [20] | 李邵军, Knappett J A, 冯夏庭. 库水位升降条件下边坡失稳离心模型试验研究[J]. 岩石力学与工程学报, 2008, 27(8): 1586-1593. |
| Li S J, Knappett J A, Feng X T. Centrifugal test on slope instability influenced by rise and fall of reservoir water level[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(8): 1586-1593. (in Chinese) | |
| [21] | Gaskin S J, Pieterse J, Al Shafie A, et al. Erosion of undisturbed clay samples from the banks of the St. Lawrence River[J]. Canadian Journal of Civil Engineering, 2003, 30(3): 585-595. |
| [22] | 叶海林, 郑颖人, 杜修力, 等. 边坡动力破坏特征的振动台模型试验与数值分析[J]. 土木工程学报, 2012, 45(9): 128-35. |
| Ye H L, Zheng Y R, Du X L, et al. Shaking table model test and numerical analysis on dynamic failure characteristics of slope[J]. China Civil Engineering Journal, 2012, 45(9): 128-135. (in Chinese) | |
| [23] | 黄珮伦, 张嘎. 水位上升与荷载耦合作用下土坡稳定极限分析方法研究[J]. 工程地质学报, 2020, 28(2): 394-400. |
| Huang P L, Zhang G. Study on slope stability under coupling loading condition by limit analysis method[J]. Journal of Engineering Geology, 2020, 28(2): 394-400. (in Chinese) | |
| [24] | 丰定祥, 吴家秀, 葛修润. 边坡稳定性分析中几个问题的探讨[J]. 岩土工程学报, 1990, 12(3): 1-9. |
| Feng D X, Wu J X, Ge X R. Some problems of slope stability analysis[J]. Chinese Journal of Geotechnical Engineering, 1990, 12(3): 1-9. (in Chinese) | |
| [25] | Lü X L, Xue D W, Chen Q S, et al. Centrifuge model test and limit equilibrium analysis of the stability of municipal solid waste slopes[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(4): 3011-3021. |
| [26] | 陈云敏, 魏新江, 李育超. 边坡非圆弧临界滑动面的粒子群优化算法[J]. 岩石力学与工程学报, 2006, 25(7): 1443-1449. |
| Chen Y M, Wei X J, Li Y C. Locating non-circular critical slip surfaces by particle swarm optimization algorithm[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(7): 1443-1449. (in Chinese) | |
| [27] | Göransson G, Norrman J, Larson M, et al. A methodology for estimating risks associated with landslides of contaminated soil into rivers[J]. Science of the Total Environment, 2014, 472: 481-495. |
| [28] | 陈祖煜. 土力学经典问题的极限分析上、下限解[J]. 岩土工程学报, 2002, 24(1): 1-11. |
| Chen Z Y. Limit analysis for the classic problems of soil mechanics[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(1): 1-11. (in Chinese) | |
| [29] | 黄茂松, 王浩然, 刘怡林. 基于转动-平动组合破坏机构的含软弱夹层土坡降雨入渗稳定上限分析[J]. 岩土工程学报, 2012, 34(9):1561-1567. |
| Huang M S, Wang H R, Liu Y L. Rotation-translation combined mechanism for stability analysis of slopes with weak interlayer under rainfall condition[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1561-1567. (in Chinese) | |
| [30] | Huang M S, Fan X P, Wang H R. Three-dimensional upper bound stability analysis of slopes with weak interlayer based on rotational-translational mechanisms[J]. Engineering Geology, 2017, 223: 82-91. |
| [31] | 陈国庆, 黄润秋, 石豫川, 等. 基于动态和整体强度折减法的边坡稳定性分析[J]. 岩石力学与工程学报, 2014, 33(2): 243-56. |
| Chen G Q, Huang R Q, Shi Y C, et al. Stability analysis of slope based on dynamic and whole strength reduction methods[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(2): 243-256. (in Chinese) | |
| [32] | 丰土根, 陈育民, 王可佳, 等. 三维有限差分强度折减法分析边坡稳定性研究[J]. 水利与建筑工程学报, 2010, 8(4): 81-85. |
| Feng T G, Chen Y M, Wang K J, et al. 3D slope stability analysis based on lagrangian difference strength reduction method[J]. Journal of Water Resources and Architectural Engineering, 2010, 8(4): 81-85. (in Chinese) | |
| [33] | Shi C, Chen Y, Zhang L K, et al. Numerical study on mechanical characteristics of gabion mixed media with discrete element method[J]. Construction and Building Materials, 2024, 438, doi: 10.1016/j.conbuildmat.2024.137108. |
| [34] | 廉艳平, 张帆, 刘岩, 等. 物质点法的理论和应用[J]. 力学进展, 2013, 43(2): 237-264. |
| Lian Y P, Zhang F, Liu Y, et al. Material point method and its applications[J]. Advances in Mechanics, 2013, 43(2): 237-264. (in Chinese) | |
| [35] | 唐雄, 李新坡, 姚军, 等. 基于多相物质点法的土-水耦合动力模型[J]. 岩土力学, 2021, 42(12): 3345-3355. |
| Tang X, Li X P, Yao J, et al. Soil-water coupling dynamic model based on multiphase material point method[J]. Rock and Soil Mechanics, 2021, 42(12): 3345-3355. (in Chinese) | |
| [36] | Armaghani D J, Asteris P G. A comparative study of ANN and ANFIS models for the prediction of cement-based mortar materials compressive strength[J]. Neural Computing and Applications, 2021, 33(9): 4501-4532. |
| [37] | Gao W, Ge S S. A comprehensive review of slope stability analysis based on artificial intelligence methods[J]. Expert Systems with Applications, 2024, 239, doi: 10.1016/j.eswa.2023.122400. |
| [38] |
Chauhan V K, Dahiya K, Sharma A. Problem formulations and solvers in linear SVM: A review[J]. Artificial Intelligence Review, 2019, 52(2): 803-855.
DOI |
| [39] | 罗战友, 杨晓军, 龚晓南. 基于支持向量机的边坡稳定性预测模型[J]. 岩石力学与工程学报, 2005, 24(1): 144-8. |
| Luo Z Y, Yang X J, Gong X N. Support vector machine model in slope stability evaluation[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(1): 144-148. (in Chinese) | |
| [40] | 林大超, 安凤平, 郭章林, 等. 滑坡位移的多模态支持向量机模型预测[J]. 岩土力学, 2011, 32(增刊1): 451-458. |
| Lin D C, An F P, Guo Z L, et al. Prediction of landslide displacements through multimode support vector machine model[J]. Rock and Soil Mechanics, 2011, 32(Suppl 1): 451-458. (in Chinese) | |
| [41] | 曾明, 裴学章. 采用喷浆钢丝网维护露天矿边坡[J]. 金属矿山, 1982(10): 49-50. |
| Zeng M, Pei X Z. Using shotcrete and steel mesh to maintain open-pit mine slopes[J]. Metal Mine, 1982(10): 49-50. (in Chinese) | |
| [42] | 王恭先. 滑坡防治中的关键技术及其处理方法[J]. 岩石力学与工程学报, 2005(21): 20-29. |
| Wang G X. Key Technique in landslide control and its handling measures[J]. Chinese Journal of Rock Mechanics and Engineering, 2005(21): 20-29. (in Chinese) | |
| [43] | 杨庆季, 栾茂田, 张克. 土工格栅加筋路堤边坡结构性能模型试验研究[J]. 岩土力学, 2005, 26(8): 1243-1256, 1252. |
| Yang Q J, Luan M T, Zhang K. Studies on structural performance of embankment slopes reinforced by geogrids with model tests[J]. Rock and Soil Mechanics, 2005, 26(8): 1243-1246, 1252. (in Chinese) | |
| [44] | 张楚汉, 王光谦. 关于黄河流域生态保护和高质量发展的思考[J]. 人民黄河, 2024, 46(9): 1-7. |
| Zhang C H, Wang G Q. Thoughts on ecological protection and high-quality development in the Yellow River basin[J]. Yellow River, 2024, 46(9): 1-7. (in Chinese) | |
| [45] | 彭超, 徐洲平. 生态袋挡墙护坡技术在运河航道整治工程中的应用[J]. 水利规划与设计, 2010(5): 100-102. |
| Peng C, Xu Z P. Application of ecological bag retaining wall slope protection technology in canal navigation channel regulation project[J]. Water Resources Planning and Design, 2010(5): 100-102. (in Chinese) | |
| [46] | 谭少华, 汪益敏. 高速公路边坡生态防护技术研究进展与思考[J]. 水土保持研究, 2004, 11(3): 81-84. |
| Tan S H, Wang Y M. Research progress and thinking of bioengineering techniques for slope protection in expressway[J]. Research of Soil and Water Conservation, 2004, 11(3): 81-84. (in Chinese) | |
| [47] | 肖盛燮, 周辉, 凌天清. 边坡防护工程中植物根系的加固机制与能力分析[J]. 岩石力学与工程学报, 2006, 25(增刊1): 2670-2674. |
| Xiao S X, Zhou H, Ling T Q. Analysis of the reinforcement mechanism and capability of plant root systems in slope protection engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(Suppl 1): 2670-2674. (in Chinese) | |
| [48] | 李丰华, 柴华峰, 白明, 等. 生态挡土墙在航道护岸工程中的应用[J]. 水运工程, 2014(12): 122-124. |
| Li F H, Chai H F, Bai M, et al. Application of ecological retaining wall in waterway revetment engineering[J]. Port & Waterway Engineering, 2014(12): 122-124. (in Chinese) | |
| [49] |
刘鸣, 程永辉, 童军. 南水北调中线工程膨胀土边坡处理效果及评价[J]. 长江科学院院报, 2016, 33(3): 104-110.
DOI |
| Liu M, Cheng Y H, Tong J. Effectiveness of treatment measures for expansive soil slope in the middle route of the South-to-North Water Transfer Project[J]. Journal of Changjiang River Scientific Research Institute, 2016, 33(3): 104-110. (in Chinese) | |
| [50] | 张家发, 刘晓明, 焦赳赳. 膨胀土渠坡兼有排水功能的双层结构防护方案[J]. 长江科学院院报, 2009, 26(11): 37-41. |
| Zhang J F, Liu X M, Jiao J J. A protection scheme of double layers with drainage function for expansive soil slopes by canal[J]. Journal of Changjiang River Scientific Research Institute, 2009, 26(11): 37-41. (in Chinese) | |
| [51] | Jia G W, Zhan T L T, Chen Y M, et al. Performance of a large-scale slope model subjected to rising and lowering water levels[J]. Engineering Geology, 2009, 106(1/2): 92-103. |
| [52] | 胡亚安, 全强, 严秀俊, 等. 嘉陵江草街船闸上游引航道水力学问题研究[J]. 水利水运工程学报, 2012(4): 55-59. |
| Hu Y A, Quan Q, Yan X J, et al. Hydraulic characteristics of upstream approach channel during construction of Caojie shiplock on Jialingjiang River[J]. Hydro-Science and Engineering, 2012(4): 55-59. (in Chinese) | |
| [53] | 胡亚安, 王新, 陈莹颖, 等. 三峡升船机145 m水位上游对接厢内水面波动特性实船试验研究[J]. 水运工程, 2020(12): 1-6. |
| Hu Y A, Wang X, Chen Y Y, et al. Fluctuation characteristics of water surface in test box of the Three Gorges ship lift with water level of 145 m[J]. Port & Waterway Engineering, 2020(12): 1-6. (in Chinese) | |
| [54] |
石娇, 张希栋, 甄志磊, 等. 基于温度-应力耦合的冻土地区渠道衬砌防冻胀效果及适应性评价[J]. 长江科学院院报, 2022, 39(3): 131-136, 142.
DOI |
| Shi J, Zhang X D, Zhen Z L, et al. Evaluating the effectiveness and adaptability of anti-frost-heaving materials for channel lining in frozen earth areas based on temperature-stress coupling[J]. Journal of Changjiang River Scientific Research Institute, 2022, 39(3): 131-136, 142. (in Chinese) | |
| [55] | Liu H L, Ma D H, Wang C M, et al. Study on the frost heave mechanism of the water conveyance canal and optimized design of slope protection[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(11): 8397-8417. |
| [1] | WANG Xin, XUE Shu, HE Junhui, ZHONG Linbin, CHEN Zhihong, YAN Xiujun. Research Progress and Development Recommendations on Large-scale Water-saving Ship Lock Gate and Valve in Modern Canals [J]. Science and Technology Foresight, 2025, 4(3): 108-117. |
| [2] | XIAO Jianzhuang, WANG Jieyun, CHENG Yaofei, XIE Liquan, WANG Changhai, MA Shaokun, BAI Meiyan, SHEN Jianyu. Resource Utilization Technologies and Prospects for Construction Spoil in Modern Canal Engineering in the Digital Era [J]. Science and Technology Foresight, 2025, 4(3): 118-128. |
| [3] | YANG Shengfa, HU Jiang, TONG Sichen, WANG Li, JIANG Lei. Challenges and Scientific Issues of Efficient and Safe Operation of Green Waterway for Modern Canal [J]. Science and Technology Foresight, 2025, 4(3): 42-50. |
| [4] | LI Qingbin, YAO Qiyao, HU Yu, XIAO Jianzhuang, LUO Danni. Development and Prospect of Temperature Control Technology of Mass Concrete for Modern Canal [J]. Science and Technology Foresight, 2025, 4(3): 63-73. |
| [5] | ZHANG Ming, DONG Yunhao, PAN Jia, LUO Xiaowei. Research Status and Key Scientific Issues of Intelligent Construction and Smart Operation and Maintenance of Modern Canals [J]. Science and Technology Foresight, 2025, 4(3): 74-83. |
| [6] | XIAO Xuwen, HU Yaan, LIU Jiaping, XIAO Jianzhuang, FANG Hongwei, HUO Shouliang, CHEN Lihua, GUAN Tiesheng, WANG Xin, WANG Yuchun, JIN Ming, WANG Rui, YAN Qiang, ZHU Tong. Fundamental Scientific Issues of Green Construction and Operation for Modern Canal Engineering [J]. Science and Technology Foresight, 2025, 4(3): 9-22. |
| [7] | LI Ping, XIAO Xuan, LIU Zhaohui, BAI Fan, XIAO Jianzhuang, CHENG Yaofei, YAN Qiang, CAO Dongwei. Current Status and Prospects of Carbon Accounting and Low-carbon Technology for Modern Canals [J]. Science and Technology Foresight, 2025, 4(3): 97-107. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
京公网安备 11010802038735号