[1] |
Lu Y, Mao H, Zhou M. Topology optimization of electric vehicle chassis structure with distributed load-bearing batteries[J]. Structural and Multidisciplinary Optimization, 2023, 66(6), doi: 10.1007/s00158-023-03578-w.
|
[2] |
Arslan M, Karamangil M. Comprehensive optimization and design of an electric vehicle battery box side profile for lightweight and crashworthiness using a novel hybrid structure[J]. Applied Sciences, 2025, 15(4), doi: 10.3390/app15042037.
|
[3] |
高振海, 温文昊, 唐明弘, 等. 基于混合神经网络的汽车运动状态估计[J]. 汽车工程, 2022, 44(10): 1527-1536.
|
|
Gao Z H, Wen W H, Tang M H, et al. Estimation of vehicle motion state based on hybrid neural network[J]. Automotive Engineering, 2022, 44(10): 1527-1536. (in Chinese)
|
[4] |
Zhang L, Wang Q, Chen J, et al. Brake-by-wire system for passenger cars: A review of structure, control, key technologies, and application in X-by-wire chassis[J]. eTransportation, 2023, 18, doi: 10.1016/j.etran.2023.100292.
|
[5] |
张农, 钟伟民, 郑敏毅, 等. 一种多级调节阻尼阀及使用该阻尼阀的减振器、悬架系统: CN202110953125.6[P]. 2021-08-18.
|
|
Zhang N, Zhong W M, Zheng M Y, et al. A multi-stage adjustable damping valve, as well as a shock absorber and suspension system using the damping valve: CN202110953125.6[P]. 2021-08-18. (in Chinese)
|
[6] |
Chen T, Zheng M, Zhang N, et al. Study on a novel configuration switchable hydraulically interconnected suspension system under nonlinear model predictive control[J]. Vehicle System Dynamics, 2022, 60(10): 3440-3461.
|
[7] |
Liu P, Zheng M, Ning D, et al. Decoupling vibration control of a semi-active electrically interconnected suspension based on mechanical hardware-in-the-loop[J]. Mechanical Systems and Signal Processing, 2022, 166, doi: 10.1016/j.ymssp.2021.108455.
|
[8] |
Zhang N, Wang L, Du H. Motion-mode energy method for vehicle dynamics analysis and control[J]. Vehicle System Dynamics, 2014, 52(1): 1-25.
|
[9] |
Zhang N, Chen T, Zheng M, et al. Real-time identification of vehicle body motion-modes based on motion-mode energy method[J]. Mechanical Systems and Signal Processing, 2020, 143, doi: 10.1016/j.ymssp.2020.106843.
|
[10] |
Wang Q, Li R, Zhu Y, et al. Integration design and parameter optimization for a novel in-wheel motor with dynamic vibration absorbers[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(9), doi: 10.1007/s40430-020-02543-8.
|
[11] |
Zhang R. Structure design and coordinated control of electromagnetic and frictional braking system based on a hub motor[J]. Science Progress, 2021, 104(1), doi: 10.1177/0036850421998483.
|
[12] |
章恒亮, 花为. 分布式驱动系统用轮毂电机及其技术综述[J]. 中国电机工程学报, 2024, 44(7): 2871-2886.
|
|
Zhang H L, Hua W. Overview of in-wheel traction machine and its key techniques for distributed-driving system[J]. Proceedings of the CSEE, 2024, 44(7): 2871-2886. (in Chinese)
|
[13] |
Yan K, Hu Z, Hu J, et al. A critical review of radial field in-wheel motors: Technical progress and future trends[J]. eTransportation, 2024, 22, doi: 10.1016/j.etran.2024.100353.
|
[14] |
Schaub A. Robust perception from optical sensors for reactive behaviors in autonomous robotic vehicles[M]. Wiesbaden: Springer Fachmedien Wiesbaden, 2018.
|
[15] |
王鹏飞, 胡安辉. 新型主销式独立转向机构设计[J]. 商用汽车, 2024, (3): 84-87.
|
|
Wang P F, Hu A H. The up-to-date design of main-pin independent steering mechanism[J]. Commercial Vehicle, 2024(3): 84-87. (in Chinese)
|
[16] |
Schmitt P, Mitchell W. HIRIKO new corporative version[EB/OL]. [2025-02-14]. https://www.un.org/esa/dsd/susdevtopics/sdt_pdfs/meetings2012/statements/espiau.pdf.
|
[17] |
杨萍, 苟斌, 赵春来, 等. 一种角模块和车辆: CN202311485211.4[P]. 2024-02-06.
|
|
Yang P, Gou B, Zhao C L, et al. A corner module and vehicle: CN202311485211.4[P]. 2024-02-06. (in Chinese)
|
[18] |
Protean Electric. 360-degree corner module accelerates revolution in urban mobility[EB/OL]. (2018-07-19)[2025-02-14]. https://www.proteanelectric.com/technology/#protean360plus.
|
[19] |
Electrek. Hyundai Mobis unveils successful ‘e-corner’ wheel module with crab driving and 0º turns[EB/OL]. (2021-10-26)[2025-02-14]. https://electrek.co/2021/10/26/hyundai-mobis-unveils-successful-e-corner-wheel-module-with-crab-driving-and-0o-turns/.
|
[20] |
Kojis P, Danilevičius A, Šabanovič E, et al. The second generation of electric vehicles: Integrated corner solutions[M]//TRANSBALTICA XII: Transportation Science and Technology. Cham: Springer International Publishing, 2022: 87-100.
|
[21] |
Tang C, Khajepour A. Wheel modules with distributed controllers: A multi-agent approach to vehicular control[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 10879-10888.
|
[22] |
Kim S, Shin D, Han S, et al. A novel space-constrained vehicle suspension mechanism synthesized by a systematic design process employing topology optimization[J]. Structural and Multidisciplinary Optimization, 2020, 62(3): 1497-1517.
|
[23] |
Zhao J, Li L, Chen L, et al. The concept design and dynamics analysis of a novel vehicle suspension mechanism with invariable orientation parameters[J]. Vehicle System Dynamics, 2010, 48(12): 1495-1510.
|
[24] |
CSDN. AI 驱动的生成式设计,如何应用于汽车智能建造?[EB/OL]. (2021-04-28)[2025-02-14]. https://blog.csdn.net/shadowcz007/article/details/116247299.
|
|
CSDN. How to apply AI-driven generative design in intelligent automotive manufacturing?[EB/OL]. (2021-04-28)[2025-02-14]. https://blog.csdn.net/shadowcz007/article/details/116247299. (in Chinese)
|
[25] |
Zhang Y, Shan Y, Liu X, et al. An integrated multi-objective topology optimization method for automobile wheels made of lightweight materials[J]. Structural and Multidisciplinary Optimization, 2021, 64(3): 1585-1605.
DOI
|
[26] |
Han L, Du W, Xia Z, et al. Generative design and integrated 3D printing manufacture of cross joints[J]. Materials, 2022, 15(14), doi: 10.3390/ma15144753.
|
[27] |
Liao W, Lu X, Fei Y, et al. Generative AI design for building structures[J]. Automation in Construction, 2024, 157, doi: 10.1016/j.autcon.2023.105187.
|
[28] |
Nie Z, Lin T, Jiang H, et al. TopologyGAN: Topology optimization using generative adversarial networks based on physical fields over the initial domain[J]. Journal of Mechanical Design, 2021, 143(3), doi: 10.1115/1.4049533.
|
[29] |
PIX Moving. Robobus: autonomous mobility solution[EB/OL]. [2025-02-14]. https://www.pixmoving.com/robobus.
|
[30] |
REE Automotive. REE P7-C 8-page brochure[EB/OL]. [2025-02-14]. https://ree.auto/wp-content/uploads/2024/05/REE_P7-C-8-Page-Brochure.pdf.
|
[31] |
New Atlas. GM unveils SURUS fuel cell platform for military and commercial use[EB/OL]. (2017-10-05)[2025-02-14]. https://newatlas.com/gm-surus-fuel-cell-platform/51660/.
|
[32] |
肖宁, 梁艺凡, 卢卓宇, 等. 场景驱动的“软件+硬件+服务” 系统整合创新——以广汽MagicBox智能移动服务样车为例[J]. 装饰, 2020(5): 35-39.
|
|
Xiao N, Liang Y F, Lu Z Y, et al. The scenario-driven integrated innovation of “Software+Hardware+Service” system: A case study on MagicBox MaaS prototype of GAC[J]. ZHUANGSHI, 2020(5): 35-39. (in Chinese)
|
[33] |
Sun Z, Zhang D, Li Z, et al. Optimum design and trafficability analysis for an articulated wheel-legged forestry chassis[J]. Journal of Mechanical Design, 2022, 144(1), doi: 10.1115/1.4051539.
|
[34] |
Pan K, Zhang Q, Wang Z, et al. Method for the posture control of bionic mechanical wheel-legged vehicles in hilly and mountainous areas[J]. International Journal of Agricultural and Biological Engineering, 2024, 17(5): 151-162.
|
[35] |
刘城, 王嘉轩, 刘建峰, 等. 地面机动平台可重构轮履复合推进机构研究现状与展望[J]. 北京理工大学学报, 2024, 44(6): 553-564.
|
|
Liu C, Wang J X, Liu J F, et al. Actual research technology and perspective of reconfigurable wheel-tracked locomotion systems for ground mobile platforms[J]. Transactions of Beijing Institute of Technology, 2024, 44(6): 553-564. (in Chinese)
|
[36] |
Li J, Wang J, Peng H, et al. Neural fuzzy approximation enhanced autonomous tracking control of the wheel-legged robot under uncertain physical interaction[J]. Neurocomputing, 2020, 410: 342-353.
|
[37] |
Wu Y, Guo S, Li L, et al. Design of a novel side-mounted leg mechanism with high flexibility for a multi-mission quadruped earth rover BJTUBOT[J]. Frontiers of Mechanical Engineering, 2023, 18(2), doi: 10.1007/s11465-022-0740-0.
|
[38] |
Vass S, Galassi M C, Ciuffo B, et al. A common scenario database for automated vehicles validation and certification[J]. Transportation Research Procedia, 2023, 72: 3845-3852.
|
[39] |
Althoff M, Koschi M, Manzinger S. CommonRoad: Composable benchmarks for motion planning on roads[C]// 2017 IEEE Intelligent Vehicles Symposium (IV). Piscataway: IEEE Press, 2017: 719-726.
|
[40] |
Menzel T, Bagschik G, Maurer M. Scenarios for development, test and validation of automated vehicles[C]// IEEE. 2018 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE Press, 2018: 1821-1827.
|
[41] |
Lee H, Kwon K, Lee S, et al. Design of OpenScenario structure for content creation service based on user defined story[J]. Journal of Korea Multimedia Society, 2016, 19(2): 170-179.
|
[42] |
Woo S, Ha Y, Yoo J, et al. Chassis design target setting for a high-performance car using a virtual prototype[J]. Applied Sciences, 2023, 13(2), doi: 10.3390/app13020844.
|