Science and Technology Foresight ›› 2022, Vol. 1 ›› Issue (1): 146-158.DOI: 10.3981/j.issn.2097-0781.2022.01.012
• Review and Commentary • Previous Articles Next Articles
WANG Dayi(), LI Jiaxing, DONG Tianshu, GE Dongming
Received:
2022-02-24
Revised:
2022-03-03
Online:
2022-03-20
Published:
2022-04-21
作者简介:
王大轶,研究员,博士研究生导师。现任北京空间飞行器总体设计部科技委主任。国家杰出青年科学基金、国防科技卓越青年科学(首届)基金获得者,“973”项目技术首席专家,国务院政府特殊津贴专家,航天器自主运行技术学术带头人。长期从事自主导航和自主诊断重构技术的研究。获国家技术发明奖二等奖、国家科学技术进步奖特等奖、中国自动化学会自然科学奖一等奖、中国科协求是杰出青年奖、何梁何利基金科学与技术创新奖等。电子信箱: dayiwang@163.com。
基金资助:
WANG Dayi, LI Jiaxing, DONG Tianshu, GE Dongming. Multi-source Fusion Autonomous Navigation Technologies Based on Spacecraft Observability Theory[J]. Science and Technology Foresight, 2022, 1(1): 146-158.
王大轶, 李嘉兴, 董天舒, 葛东明. 基于航天器可观测性理论的多源融合自主导航技术[J]. 前瞻科技, 2022, 1(1): 146-158.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.qianzhankeji.cn/EN/10.3981/j.issn.2097-0781.2022.01.012
[1] |
Clohessy W H, Wiltshire R S. Terminal guidance system for satellite rendezvous[J]. Journal of the Aerospace Sciences, 1960, 27(9):653-658.
DOI URL |
[2] | Alfriend K T, Schaub H, Gim D W. Gravitational perturbations, nonlinearity and circular orbit assumption effects on formation flying control strategies[C]// AAS Guidance and Control Conference. Reston: AIAA, 2000: 139-158. |
[3] | Tschauner J, Hempel P. Rendezvous with a target in an elliptical orbit[J]. Acta Astronautica, 1965, 11(2):104-109. |
[4] |
Baoyin H, Li J F, Gao Y F. Dynamical behaviors and relative trajectories of the spacecraft formation flying[J]. Aerospace Science and Technology, 2002, 6(4):295-301.
DOI URL |
[5] |
Gurfil P. Generalized solutions for relative spacecraft orbits under arbitrary perturbations[J]. Acta Astronautica, 2007, 60(2):61-78.
DOI URL |
[6] |
Ardaens J S, Gaias G. Angles-only relative orbit determination in low earth orbit[J]. Advances in Space Research, 2018, 61(11):2740-2760.
DOI URL |
[7] |
Montenbruck O, Kirschner M, D’Amico S. et al. E/I-vector separation for safe switching of the GRACE formation[J]. Aerospace Science and Technology, 2006, 10(7):628-635.
DOI URL |
[8] |
Gong S P, Baoyin H, Li J F. Coupled attitude-orbit dynamics and control for displaced solar orbits[J]. Acta Astronautica, 2009, 65(5/6):730-737.
DOI URL |
[9] |
Kristiansen R, Nicklasson P J, Gravdahl J T. Spacecraft coordination control in 6DOF: Integrator backstepping vs passivity-based control[J]. Automatica, 2008, 44(11):2896-2901.
DOI URL |
[10] |
Sinclair A J, Hurtado J E, Junkins J L. Application of the cayley form to general spacecraft motion[J]. Journal of Guidance, Control and Dynamics, 2006, 29(2):368-373.
DOI URL |
[11] |
Wang J Y, Sun Z W. 6-DOF robust adaptive terminal sliding mode control for spacecraft formation flying[J]. Acta Astronautica, 2012, 73:76-87.
DOI URL |
[12] |
Müller P C, Weber H I. Analysis and optimization of certain qualities of controllability and observability for linear dynamical systems[J]. Automatica, 1972, 8(3):237-246.
DOI URL |
[13] | Powel N D, Morgansen K A. Empirical observability Gramian rank condition for weak observability of nonlinear systems with control[C]//2015 54th IEEE Conference on Decision and Control (CDC). Piscataway: IEEE Press, 2015: 6342-6348. |
[14] | Zeng S. Observability measures for nonlinear systems[C]//2018 IEEE Conference on Decision and Control (CDC). Piscataway: IEEE Press, 2018: 4668-4673. |
[15] | Vaidya U. Observability gramian for nonlinear systems[C]//2007 46th IEEE Conference on Decision and Control. Piscataway: IEEE Press, 2007: 3357-3362. |
[16] |
Hermann R, Krener A. Nonlinear controllability and observability[J]. IEEE Transactions on Automatic Control, 1977, 22(5):728-740.
DOI URL |
[17] |
Sira-Ramirez H. Algebraic condition for observability of non-linear analytic systems[J]. International Journal of Systems Science, 1988, 19(11):2147-2155.
DOI URL |
[18] |
De Santis E, Di Benedetto M D. Observability and diagnosability of finite state systems: A unifying framework[J]. Automatica, 2017, 81:115-122.
DOI URL |
[19] |
Giua A, Mahulea C, Seatzu C. Decentralized observability of discrete event systems with synchronizations[J]. Automatica, 2017, 85:468-476.
DOI URL |
[20] |
Castillo E, Conejo A J, Pruneda R E, et al. Observability analysis in state estimation: A unified numerical approach[J]. IEEE Transactions on Power Systems, 2006, 21(2):877-886.
DOI URL |
[21] |
Rothman Y, Klein I, Filin S. Analytical observability analysis of INS with vehicle constraints[J]. Navigation-Journal of the Institute of Navigation, 2015, 61(3):227-236.
DOI URL |
[22] |
Li R, Hong Y, Wang X. Nonlinear norm-observability and simulation of control systems[J]. Systems & Control Letters, 2017, 105:14-19.
DOI URL |
[23] | 董天舒, 王大轶, 李文博. 近地小行星仅测角相对导航可观性判据[J]. 控制理论与应用, 2019, 36(12):1979-1987. |
[24] |
Zhe C. Local observability and its application to multiple measurement estimation[J]. IEEE Transactions on Industrial Electronics, 1991, 38(6):491-496.
DOI URL |
[25] |
Katriniok A, Abel D. Adaptive EKF-based vehicle state estimation with online assessment of local observability[J]. IEEE Transactions on Control Systems Technology, 2015, 24(4):1368-1381.
DOI URL |
[26] |
Moore B. Principal component analysis in linear systems: Controllability, observability, and model reduction[J]. IEEE Transactions on Automatic Control, 1981, 26(1):17-32.
DOI URL |
[27] |
Sevaston G E, Longman R W. Gain measures of controllability and observability[J]. International Journal of Control, 1985, 41(4):865-893.
DOI URL |
[28] |
Lee S, Jung J, Kim S, et al. DV-SLAM (Dual-Sensor-Based Vector-Field SLAM) and observability analysis[J]. IEEE Transactions on Industrial Electronics, 2015, 62(2):1101-1112.
DOI URL |
[29] |
Zhao Z, Yu Z, Cui P. A beacon configuration optimization method based on Fisher information for Mars atmospheric entry[J]. Acta Astronautica, 2016, 133:467-475.
DOI URL |
[30] | Ham F M, Brown R G. Observability, eigenvalues, and kalman filtering[J]. IEEE Transactions on Aerospace & Electronic Systems, 1983, AES-19(2):269-273. |
[31] |
Hahn J, Edgar T F, Marquardt W. Controllability and observability covariance matrices for the analysis and order reduction of stable nonlinear systems[J]. Journal of Process Control, 2003, 13(2):115-127.
DOI URL |
[32] | 董天舒, 孙博文, 史纪鑫. 小天体探测序列图像自主相对导航系统可观测性分析[J]. 中国科学:物理学力学天文学, 2022, 52(1):68-75. |
[33] | Carlson N A. Federated filter for fault-tolerant integrated navigation systems[C]//IEEE PLANS ’88, Position Location and Navigation Symposium, Record. Piscataway: IEEE Press, 1988: 110-119. |
[34] |
Zhu Y, You Z, Zhao J, et al. The optimality for the distributed Kalman fltering fusion with feedback[J]. Automatica, 2001, 37(9):1489-1493.
DOI URL |
[35] |
Xiong Z, Chen J, Wang R, et al. A new dynamic vector formed information sharing algorithm in federated filter[J]. Aerospace Science Technology, 2013, 29(1):37-46.
DOI URL |
[36] | 周锐, 申功勋, 房建成, 等. 多传感器融合目标跟踪[J]. 航空学报, 1998, 19(5):536-540. |
[37] |
Aeberhard M, Schlichtharle S, Kaempchen N, et al. Trackto-track fusion with asynchronous sensors using information matrix fusion for surround environment perception[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(4):1717-1726.
DOI URL |
[38] | 秦永元, 牛惠芳. 容错组合导航系统联邦滤波器设计中的信息同步[J]. 西北工业大学学报, 1998, 16(2):256-260. |
[39] | 黄显林, 卢鸿谦, 王宇飞. 组合导航非等间隔联合滤波[J]. 中国惯性技术学报, 2002, 10(3):2-8. |
[40] | Zhou Y, Yip P C, Leung H, et al. Exact maximum likelihood registration approach for data fusion[C]// Acquisition, Tracking and Pointing IX. Bellingham: SPIE, 1995: 330-341. |
[41] | Okello N, Ristic B. Maximum likelihood registration for multiple dissimilar sensors[J]. IEEE Transactions on Aerospace & Electronic Systems, 2003, 39(3):1074-1083. |
[42] |
Kang J, Park Y, Lee J, et al. Novel leakage detection by ensemble CNN-SVM and graph-based localization in water distribution systems[J]. IEEE Transactions on Industrial Electronics, 2018, 65(5):4279-4289.
DOI URL |
[43] |
Sabokrou M, Fayyaz M, Fathy M, et al. Deep-cascade: Cascading 3D deep neural networks for fast anomaly detection and localization in crowded scenes[J]. IEEE Transactions on Image Processing, 2017, 26(4):1992-2004.
DOI URL |
[44] |
Sun T, Xing F, You Z. Optical system error analysis and calibration method of high-accuracy star trackers[J]. Sensors (Basel, Switzerland), 2013, 13(4):4598-4623.
DOI URL |
[45] |
Mi W, Bo Y, Fen H, et al. On-orbit geometric calibration model and its applications for high-resolution optical satellite imagery[J]. Remote Sensing, 2014, 6(5):4391-4408.
DOI URL |
[46] |
Xiong K, Zong H. Performance evaluation of star sensor low frequency error calibration[J]. Acta Astronautica, 2014, 98(1):24-36.
DOI URL |
[47] |
Pittelkau M E. Kalman filtering for spacecraft system alignment calibration[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(6):1187-1195.
DOI URL |
[48] |
Xiong K, Zong H. Performance evaluation of star sensor low frequency error calibration[J]. Acta Astronautica, 2014, 98(1):24-36.
DOI URL |
[49] |
Wang J, He Z, Zhou H, et al. Regularized robust filter for attitude determination system with relative installation error of star trackers[J]. Acta Astronautica, 2013, 87:88-95.
DOI URL |
[50] | 孙博文, 王大轶, 王炯琦, 等. 基于序列图像的航天器自主导航降维滤波方法[J]. 航空学报, 2021, 42(4):525-533. |
[51] |
Li M, Huang X, Wang D, et al. Radar-updated inertial landing navigation with online initialization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(5):3360-3374.
DOI URL |
[1] | ZHANG Jie, ZHOU Feng, GUO Shengjie, WANG Hua, YAN Fulong. Research Status and Development Trends in Lunar Base Communication and Navigation Technology [J]. Science and Technology Foresight, 2024, 3(1): 116-125. |
[2] | YAN Qiong, ZHANG Jinlei, FENG Ke, LI Huanyu, LI Yue, CHENG Xiyu. Development and Suggestions on Key Biotechnology of Extraterrestrial Recyclable Life Support Systems [J]. Science and Technology Foresight, 2024, 3(1): 126-136. |
[3] | ZHANG Zexu, GAO Feiyu, MEI Hongyuan, MENG Songhe, CHI Haiyi, ZHAO Jialong, WANG Yiyu, YUAN Shuai. Construction Planning and Development Strategy of Scientific Research Bases on the Moon and Mars and Other Celestial Bodies [J]. Science and Technology Foresight, 2024, 3(1): 49-61. |
[4] | YU Dengyun, MA Jinan. Progress and Prospect of Deep Space Exploration in China [J]. Science and Technology Foresight, 2022, 1(1): 17-27. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京公网安备 11010802038735号