| [1] |
Li J, Cui X Y, Jia Z P, et al. A strontium lattice clock with both stability and uncertainty below 5×10-18[J]. Metrologia, 2024, 61(1): 015006, doi: 10.1088/1681-7575/ad1a4c.
|
| [2] |
Aeppli A, Kim K, Warfield W, et al. Clock with 8×10-19 systematic uncertainty[J]. Physical Review Letters, 2024, 133(2): 023401, doi: 10.1103/PhysRevLett.133.023401.
|
| [3] |
Tkalya E V, Varlamov V O, Lomonosov V V, et al. Processes of the nuclear isomer 229mTh(3/2+, 3.5±1.0 eV) resonant excitation by optical photons[J]. Physica Scripta, 1996, 53(3): 296, doi: 10.1088/0031-8949/53/3/003.
|
| [4] |
Tiedau J, Okhapkin M V, Zhang K, et al. Laser excitation of the Th-229 nucleus[J]. Physical Review Letters, 2024, 132: 182501, doi: 10.1103/PhysRevLett.132.182501.
|
| [5] |
Elwell R, Schneider C, Jeet J, et al. Laser excitation of the Th229 nuclear isomeric transition in a solid-state host[J]. Physical Review Letters, 2024, 133: 013201, doi: 10.1103/PhysRevLett.133.013201.
|
| [6] |
Zhang C K, Ooi T, Higgins J S, et al. Frequency ratio of the 229mTh nuclear isomeric transition and the 87Sr atomic clock[J]. Nature, 2024, 633(8028): 63-70.
DOI
|
| [7] |
Zhang C K, Vondewr W L, Doyle J F, et al. 229ThF4 thin films for solid-state nuclear clocks[J]. Nature, 2024, 636(8043): 603-608.
DOI
|
| [8] |
Qu W Z, Jin S C, Sun J, et al. Sub-Hertz resonance by weak measurement[J]. Nature Communications, 2020, 11: 1752, doi: 10.1038/s41467-020-15557-6.
PMID
|
| [9] |
房建成, 魏凯, 江雷, 等. 超高灵敏极弱磁场与惯性测量科学装置与零磁科学展望[J]. 航空学报, 2022, 43(10): 527752, doi: 10.7527/S1000-6893.2022.27752.
|
|
Fang J C, Wei K, Jiang L, et al. Scientific facilities for ultrasensitive measurement of magnetic field and inertial rotation and prospects of zero-magnetism science[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527752, doi: 10.7527/S1000-6893.2022.27752. (in Chinese)
|
| [10] |
Zhang R, Xiao W, Ding Y D, et al. Recording brain activities in unshielded Earth’s field with optically pumped atomic magnetometers[J]. Science Advances, 2020, 6(24): eaba8792, doi: 10.1126/sciadv.aba8792.
|
| [11] |
Meyer D H, Kunz P D, Cox K C. Waveguide-coupled Rydberg spectrum analyzer from 0 to 20 GHz[J]. Physical Review Applied, 2021, 15: 014053, doi: 10.1103/PhysRevApplied.15.014053.
|
| [12] |
Jing M Y, Hu Y, Ma J, et al. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy[J]. Nature Physics, 2020, 16(9): 911-915.
DOI
|
| [13] |
Wang Q X, Liang Y K, Wang Z H, et al. High-precision measurement of microwave electric field by cavity-enhanced critical behavior in a many-body Rydberg atomic system[J]. Science China Physics, Mechanics & Astronomy, 2025, 68(6): 264211, doi: 10.1007/s11433-024-2622-x.
|
| [14] |
Durfee D S, Shaham Y K, Kasevich M A. Long-term stability of an area-reversible atom-interferometer Sagnac gyroscope[J]. Physical Review Letters, 2006, 97: 240801, doi: 10.1103/PhysRevLett.97.240801.
|
| [15] |
Stray B, Lamb A, Kaushik A, et al. Quantum sensing for gravity cartography[J]. Nature, 2022, 602(7898): 590-594.
DOI
|
| [16] |
Cassens C, Meyer-Hoppe B, Rasel E, et al. Entanglement-enhanced atomic gravimeter[J]. Physical Review X, 2025, 15: 011029, doi: 10.1103/PhysRevX.15.011029.
|
| [17] |
Schofield H, Boto E, Shah V, et al. Quantum enabled functional neuroimaging: The why and how of magnetoencephalography using optically pumped magnetometers[J]. Contemporary Physics, 2022, 63(3): 161-179.
DOI
PMID
|
| [18] |
Miller B S, Bezinge L, Gliddon H D, et al. Spin-enhanced nanodiamond biosensing for ultrasensitive diagnostics[J]. Nature, 2020, 587(7835): 588-593.
DOI
|
| [19] |
Lu Q, Vosberg B, Wang Z Y, et al. Unraveling eumelanin radical formation by nanodiamond optical relaxometry in a living cell[J]. Journal of the American Chemical Society, 2024, 146(11): 7222-7232.
DOI
PMID
|
| [20] |
Abbott B P, Abbott R, Abbott T D, et al. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 2016, 116: 061102, doi: 10.1103/PhysRevLett.116.061102.
|
| [21] |
Pedrozo-PEÑAFIEL E, Colombo S, Shu C, et al. Entanglement on an optical atomic-clock transition[J]. Nature, 2020, 588(7838): 414-418.
DOI
|
| [22] |
Bhattacharyya P, Chen W, Huang X, et al. Imaging the Meissner effect in hydride superconductors using quantum sensors[J]. Nature, 2024, 627(8002): 73-79.
DOI
|
| [23] |
Jiang M, Hong T Z, Hu D D, et al. Long-baseline quantum sensor network as dark matter haloscope[J]. Nature Communications, 2024, 15: 3331, doi: 10.1038/s41467-024-47566-0.
PMID
|