Science and Technology Foresight ›› 2025, Vol. 4 ›› Issue (4): 34-45.DOI: 10.3981/j.issn.2097-0781.2025.04.003
• Review and Commentary • Previous Articles Next Articles
GUO Fuqiang1, SHAO Xiaoqiang1,2,†(
)
Received:2025-09-15
Revised:2025-10-31
Online:2025-12-20
Published:2025-12-30
Contact:
†
通讯作者:
†
作者简介:邵晓强,教授,博士生导师。中国民主促进会会员。主要从理论和应用的角度研究基于里德堡原子、离子阱及腔量子电动力学等物理系统的量子计算与量子模拟。主持国家自然科学基金4项。2021年和2023年入选斯坦福大学和Elsevier共同发布的全球前2%顶尖科学家榜单。电子信箱:xqshao@nenu.edu.cn。
基金资助:GUO Fuqiang, SHAO Xiaoqiang. Research Progress on Neutral-Atom Quantum Computing[J]. Science and Technology Foresight, 2025, 4(4): 34-45.
郭富强, 邵晓强. 中性原子量子计算研究进展[J]. 前瞻科技, 2025, 4(4): 34-45.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.qianzhankeji.cn/EN/10.3981/j.issn.2097-0781.2025.04.003
| [1] |
Young A W, Eckner W J, Milner W R, et al. Half-minute-scale atomic coherence and high relative stability in a tweezer clock[J]. Nature, 2020, 588(7838): 408-413.
DOI |
| [2] |
Bluvstein D, Levine H, Semeghini G, et al. A quantum processor based on coherent transport of entangled atom arrays[J]. Nature, 2022, 604(7906): 451-456.
DOI |
| [3] |
Tian Z Z, Chang H B, Lv X, et al. Extending the coherence time limit of a single-alkali-atom qubit by suppressing phonon-jumping-induced decoherence[J]. Optica, 2024, 11(10): 1391-1396.
DOI URL |
| [4] |
Manetsch H J, Nomura G, Bataille E, et al. A tweezer array with 6100 highly coherent atomic qubits[J]. Nature, 2025, 647(8088): 60-67.
DOI |
| [5] |
Saffman M, Walker T G, Mølmer K. Quantum information with Rydberg atoms[J]. Reviews of Modern Physics, 2010, 82(3): 2313-2363.
DOI URL |
| [6] | Beterov I I, Ryabtsev I I, Tretyakov D B, et al. Quasiclassical calculations of blackbody-radiation-induced depopulation rates and effective lifetimes of Rydberg nS, nP, and nD alkali-metal atoms with n≤ 80[J]. Physical Review A, 2009, 79(5): 052504, doi: 10.1103/PhysRevA.79.052504. |
| [7] | Saffman M. Quantum computing with atomic qubits and Rydberg interactions: Progress and challenges[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49(20): 202001, doi: 10.1088/0953-4075/49/20/202001. |
| [8] |
Chiu N C, Trapp E C, Guo J E, et al. Continuous operation of a coherent 3,000-qubit system[J]. Nature, 2025, 646(8087): 1075-1080.
DOI |
| [9] | Bruzewicz C D, Chiaverini J, McConnell R, et al. Trapped-ion quantum computing: Progress and challenges[J]. Applied Physics Reviews, 2019, 6(2): 021314, doi: 10.1063/1.5088164. |
| [10] | Jiang Y Y, Deng C Q, Fan H, et al. Advancements in superconducting quantum computing[J]. National Science Review, 2025, 12(8): nwaf246, doi: 10.1093/nsr/nwaf246. |
| [11] | Wintersperger K, Dommert F, Ehmer T, et al. Neutral atom quantum computing hardware: Performance and end-user perspective[J]. EPJ Quantum Technology, 2023, 10: 32, doi: 10.1140/epjqt/s40507-023-00190-1. |
| [12] | Weber S, Tresp C, Menke H, et al. Calculation of Rydberg interaction potentials[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50(13): 133001, doi: 10.1088/1361-6455/aa743a. |
| [13] | Jaksch D, Cirac J I, Zoller P, et al. Fast quantum gates for neutral atoms[J]. Physical Review Letters, 2000, 85(10): 2208, doi: 10.1103/PhysRevLett.85.2208. |
| [14] |
Evered S J, Bluvstein D, Kalinowski M, et al. High-fidelity parallel entangling gates on a neutral-atom quantum computer[J]. Nature, 2023, 622(7982): 268-272.
DOI |
| [15] |
Finkelstein R, Tsai R B S, Sun X, et al. Universal quantum operations and ancilla-based read-out for tweezer clocks[J]. Nature, 2024, 634(8033): 321-327.
DOI |
| [16] | Tsai R B S, Sun X, Shaw A L, et al. Benchmarking and fidelity response theory of high-fidelity Rydberg entangling gates[J]. PRX Quantum, 2025, 6(1): 010331, doi: 10.1103/PRXQuantum.6.010331. |
| [17] |
Bluvstein D, Evered S J, Geim A A, et al. Logical quantum processor based on reconfigurable atom arrays[J]. Nature, 2024, 626(7997): 58-65.
DOI |
| [18] | Wurtz J, Lopes P L S, Gorgulla C, et al. Industry applications of neutral-atom quantum computing solving independent set problems[DB/OL]. arXiv preprint:2205.08500, 2022. |
| [19] |
Hu Z, Kimble H J. Observation of a single atom in a magneto-optical trap[J]. Optics Letters, 1994, 19(22): 1888-1890.
PMID |
| [20] |
Schlosser N, Reymond G, Protsenko I, et al. Sub-poissonian loading of single atoms in a microscopic dipole trap[J]. Nature, 2001, 411(6841): 1024-1027.
DOI URL |
| [21] | Kim H, Lee W, Lee H, et al. In situ single-atom array synthesis using dynamic holographic optical tweezers[J]. Nature communications, 2016, 7(1): 13317, doi: 10.1038/ ncomms13317. |
| [22] |
Endres M, Bernien H, Keesling A, et al. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays[J]. Science, 2016, 354(6315): 1024-1027.
PMID |
| [23] |
Barredo D, de Léséleuc S, Lienhard V, et al. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays[J]. Science, 2016, 354(6315): 1021-1023.
PMID |
| [24] |
Barredo D, Lienhard V, de Leseleuc S, et al. Synthetic three-dimensional atomic structures assembled atom by atom[J]. Nature, 2018, 561(7721): 79-82.
DOI |
| [25] | Lin R, Zhong H S, Li Y, et al. AI-enabled parallel assembly of thousands of defect-free neutral atom arrays[J]. Physical Review Letters, 2025, 135(6): 060602, doi: 10.1103/2ym8-vs82. |
| [26] | Isenhower L, Urban E, Zhang X L, et al. Demonstration of a neutral atom controlled-NOT quantum gate[J]. Physical Review Letters, 2010, 104(1): 010503, doi: 10.1103/PhysRevLett.104.010503. |
| [27] | Wilk T, Gaëtan A, Evellin C, et al. Entanglement of two individual neutral atoms using Rydberg blockade[J]. Physical Review Letters, 2010, 104(1): 010502, doi: 10.1103/PhysRevLett.104.010502. |
| [28] | Graham T M, Kwon M, Grinkemeyer B, et al. Rydberg-mediated entanglement in a two-dimensional neutral atom qubit array[J]. Physical Review Letters, 2019, 123(23): 230501, doi: 10.1103/PhysRevLett.123.230501. |
| [29] | Levine H, Keesling A, Semeghini G, et al. Parallel implementation of high-fidelity multiqubit gates with neutral atoms[J]. Physical Review Letters, 2019, 123(17): 170503, doi: 10.1103/PhysRevLett.123.170503. |
| [30] | Wurtz J, Bylinskii A, Braverman B, et al. Aquila:QuEra's 256-qubit neutral-atom quantum computer[DB/OL]. arXiv preprint:2306.11727, 2023. |
| [31] |
Labuhn H, Barredo D, Ravets S, et al. Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models[J]. Nature, 2016, 534(7609): 667-670.
DOI |
| [32] | Levine H, Keesling A, Omran A, et al. High-fidelity control and entanglement of Rydberg-atom qubits[J]. Physical Review Letters, 2018, 121(12): 123603, doi: 10.1103/PhysRevLett.121.123603. |
| [33] | Liu Y Y, Sun Y, Fu Z, et al. Infidelity induced by ground-Rydberg decoherence of the control qubit in a two-qubit Rydberg-blockade gate[J]. Physical Review Applied, 2021, 15(5): 054020, doi: 10.1103/PhysRevApplied.15.054020. |
| [34] | Covey J P, Madjarov I S, Cooper A, et al. 2000-times repeated imaging of strontium atoms in clock-magic tweezer arrays[J]. Physical Review Letters, 2019, 122(17): 173201, doi: 10.1103/PhysRevLett.122.173201. |
| [35] | Gehr R, Volz J, Dubois G, et al. Cavity-based single atom preparation and high-fidelity hyperfine state readout[J]. Physical Review Letters, 2010, 104(20): 203602, doi: 10.1103/PhysRevLett.104.203602. |
| [36] | Wang J, Huang D Y, Zhou X L, et al. Ultrafast high-fidelity state readout of single neutral atom[J]. Physical Review Letters, 2025, 134(24): 240802, doi: 10.1103/PhysRevLett.134.240802 |
| [37] |
Wu T Y, Kumar A, Giraldo F, et al. Stern-Gerlach detection of neutral-atom qubits in a state-dependent optical lattice[J]. Nature Physics, 2019, 15(6): 538-542.
DOI |
| [38] | Sheng C, He X D, Xu P, et al. High-fidelity single-qubit gates on neutral atoms in a two-dimensional magic-intensity optical dipole trap array[J]. Physical Review Letters, 2018, 121(24): 240501, doi: 10.1103/PhysRevLett.121.240501. |
| [39] | Shi X F. Quantum logic and entanglement by neutral Rydberg atoms: Methods and fidelity[J]. Quantum Science and Technology, 2022, 7(2): 023002, doi: 10.1088/2058-9565/ac18b8. |
| [40] | Zhang X L, Isenhower L, Gill A T, et al. Deterministic entanglement of two neutral atoms via Rydberg blockade[J]. Physical Review A, 2010, 82(3): 030306, doi: 10.1103/PhysRevA.82.030306. |
| [41] | Maller K M, Lichtman M T, Xia T, et al. Rydberg-blockade controlled-not gate and entanglement in a two-dimensional array of neutral-atom qubits[J]. Physical Review A, 2015, 92(2): 022336, doi: 10.1103/PhysRevA.92.022336. |
| [42] | Zeng Y, Xu P, He X D, et al. Entangling two individual atoms of different isotopes via Rydberg blockade[J]. Physical Review Letters, 2017, 119(16): 160502, doi: 10.1103/PhysRevLett.119.160502. |
| [43] | Saffman M, Beterov I I, Dalal A, et al. Symmetric Rydberg controlled-Z gates with adiabatic pulses[J]. Physical Review A, 2020, 101(6): 062309, doi: 10.1103/PhysRevA.101.062309. |
| [44] | Li X X, Shao X Q, Li W B. Single temporal-pulse-modulated parameterized controlled-phase gate for Rydberg atoms[J]. Physical Review Applied, 2022, 18(4): 044042, doi: 10.1103/PhysRevApplied.18.044042. |
| [45] | Fu Z, Xu P, Sun Y, et al. High-fidelity entanglement of neutral atoms via a Rydberg-mediated single-modulated-pulse controlled-phase gate[J]. Physical Review A, 2022, 105(4): 042430, doi: 10.1103/PhysRevA.105.042430. |
| [46] | Jandura S, Pupillo G. Time-optimal two-and three-qubit gates for Rydberg atoms[J]. Quantum, 2022, 6: 712, doi: 10.22331/q-2022-05-13-712. |
| [47] |
Ma S, Liu G Y, Peng P, et al. High-fidelity gates and mid-circuit erasure conversion in an atomic qubit[J]. Nature, 2023, 622(7982): 279-284.
DOI |
| [48] |
Cao A, Eckner W J, Yelin T L, et al. Multi-qubit gates and Schrödinger cat states in an optical clock[J]. Nature, 2024, 634(8033): 315-320.
DOI |
| [49] | Jandura S, Thompson J D, Pupillo G. Optimizing Rydberg gates for logical-qubit performance[J]. PRX Quantum, 2023, 4(2): 020336, doi:10.1103/PRXQuantum.4.020336. |
| No related articles found! |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
京公网安备 11010802038735号