Science and Technology Foresight ›› 2025, Vol. 4 ›› Issue (4): 21-33.DOI: 10.3981/j.issn.2097-0781.2025.04.002
• Review and Commentary • Previous Articles Next Articles
MA Jianyu1(
), WU Yukai2,3, ZHANG Chi1, MEI Quanxin1, LIAN Wenqian1, CAI Minglei1, ZHAO Wending1, MAO Zhichao1, YAO Lin1, YANG Haoxiang1,†(
), DUAN Luming2,3,4,†(
)
Received:2025-01-22
Revised:2025-09-12
Online:2025-12-20
Published:2025-12-30
Contact:
†
马剑宇1(
), 吴宇恺2,3, 张弛1, 梅全鑫1, 连文倩1, 蔡明磊1, 赵文定1, 毛志超1, 姚麟1, 杨蒿翔1,†(
), 段路明2,3,4,†(
)
通讯作者:
†
作者简介:马剑宇,博士。华翊博奥(北京)量子科技有限公司光控模块负责人。主要从事基于离子阱的量子计算研究工作,在国际上首次实现了基于同种离子的双重量子比特编码技术,为大规模离子量子计算提供了全新的思路。主导离子阱量子计算机光控系统的研发,深度参与了多代离子阱量子计算机商业化原型机的研发工作,实现了原型机核心关键指标的突破。电子信箱:majianyu@hyqubit.com。基金资助:MA Jianyu, WU Yukai, ZHANG Chi, MEI Quanxin, LIAN Wenqian, CAI Minglei, ZHAO Wending, MAO Zhichao, YAO Lin, YANG Haoxiang, DUAN Luming. Progress and suggestions on ion trap quantum computing and its scaling research[J]. Science and Technology Foresight, 2025, 4(4): 21-33.
马剑宇, 吴宇恺, 张弛, 梅全鑫, 连文倩, 蔡明磊, 赵文定, 毛志超, 姚麟, 杨蒿翔, 段路明. 离子量子计算及其规模化研究进展和建议[J]. 前瞻科技, 2025, 4(4): 21-33.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.qianzhankeji.cn/EN/10.3981/j.issn.2097-0781.2025.04.002
| [1] | Bruzewicz C D, Bruzewicz J, McConnell R, et al. Trapped-ion quantum computing: Progress and challenges[J]. Applied Physics Reviews, 2019, 6(2): 021314, doi:10.1063/1.5088164. |
| [2] |
Monroe C, Meekhof D M, King B E, et al. Demonstration of a fundamental quantum logic gate[J]. Physical Review Letters, 1995, 75(25): 4714-4717.
PMID |
| [3] | Li B W, Mei Q X, Wu Y K, et al. Observation of non-Markovian spin dynamics in a Jaynes-cummings-Hubbard model using a trapped-ion quantum simulator[J]. Physical Review Letters, 2022, 129(14): 140501, doi:10.1103/PhysRevLett.129.14050. |
| [4] |
Guo S A, Wu Y K, Ye J, et al. A site-resolved two-dimensional quantum simulator with hundreds of trapped ions[J]. Nature, 2024, 630(8017): 613-618.
DOI |
| [5] |
Monz T, Nigg D, Martinez E A, et al. Realization of a scalable shor algorithm[J]. Science, 2016, 351(6277): 1068-1070.
DOI PMID |
| [6] | Ryan-Anderson C, Bohnet J G, Lee K, et al. Realization of real-time fault-tolerant quantum error correction[J]. Physical Review X, 2021, 11(4): 041058, doi:10.1103/PhysRevX.11.041058. |
| [7] |
Benioff P. The computer as a physical system: a microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines[J]. Journal of Statistical Physics, 1980, 22(5): 563-591.
DOI URL |
| [8] |
Feynman R P. Simulating physics with computers[J]. International Journal of Theoretical Physics, 1982, 21(6): 467-488.
DOI URL |
| [9] | Shor P W. Algorithms for quantum computation: discrete logarithms and factoring[C]// Proceedings 35th Annual Symposium on Foundations of Computer Science. Piscataway: IEEE Press, 2002: 124-134. |
| [10] | Dalzell A M, McArdle S, Berta M, et al. Quantum algorithms:A survey of applications and end-to-end complexities[DB/OL]. arXiv preprint:2310.03011, 2023. |
| [11] | Shor P W. Scheme for reducing decoherence in quantum computer memory[J]. Physical Review A, 1995, 52(4): R2493-R2496. |
| [12] |
Steane A M. Error correcting codes in quantum theory[J]. Physical Review Letters, 1996, 77(5): 793-797.
PMID |
| [13] |
Gottesman D. Theory of fault-tolerant quantum computation[J]. Physical Review A, 1998, 57(1): 127-137.
DOI URL |
| [14] | Gaebler J P, Tan T R, Lin Y, et al. High-fidelity universal gate set for Be9+Ion qubits[J]. Physical Review Letters, 2016, 117(6): 060505, doi: 10.1103/PhysRevLett.117.060505. |
| [15] | Craig C R, Tinkey H N, Sawyer B C, et al. High-fidelity bell-state preparation with 40Ca+ optical qubits[J]. Physical Review Letters, 2021, 127(13): 130505, doi: 10.1103/PhysRevLett.127.130505. |
| [16] | Lin W J, Cho H, Chen Y Q, et al. 24 days-stable CNOT gate on fluxonium qubits with over 99.9% fidelity[J]. PRX Quantum, 2025, 6: 010349, doi: 10.48550/arXiv.2407.15783. |
| [17] | Tsai R B, Sun X K, Shaw A L, et al. Benchmarking and fidelity response theory of high-fidelity Rydberg entangling gates[J]. PRX Quantum, 2025, 6: 010331, doi: 10.1103/PRXQuantum.6.010331. |
| [18] |
Bluvstein D, Evered S J, Geim A A, et al. Logical quantum processor based on reconfigurable atom arrays[J]. Nature, 2024, 626(7997): 58-65.
DOI |
| [19] | Gao D X, Fan D J, Zha C, et al. Establishing a new benchmark in quantum computational advantage with 105-qubit Zuchongzhi 3.0 processor[J]. Physical Review Letters, 2025, 134(9): 090601, doi: 10.1103/PhysRevLett.134.090601. |
| [20] |
Google Quantum AI and Collaborators. Quantum error correction below the surface code threshold[J]. Nature, 2025, 638(8052): 920-926.
DOI |
| [21] |
Arute F, Arya K, Babbush R, et al. Quantum supremacy using a programmable superconducting processor[J]. Nature, 2019, 574(7779): 505-510.
DOI |
| [22] | Preskill J. Quantum computing in the NISQ era and beyond[J]. Quantum, 2018, 2: 79, doi: 10.22331/q-2018-08-06-79. |
| [23] | Smith M C, Leu A D, Miyanishi K, et al. Single-qubit gates with errors at the 10-7level[J]. Physical Review Letters, 2025, 134(23): 230601, doi: 10.1103/42w2-6ccy. |
| [24] | Ballance C J, Harty T P, Linke N M, et al. High-fidelity quantum logic gates using trapped-ion hyperfine qubits[J]. Physical Review Letters, 2016, 117(6): 060504, doi: 10.1103/PhysRevLett.117.060504. |
| [25] | Edmunds C L, Tan T R, Milne A R, et al. Scalable hyperfine qubit state detection via electron shelving in the 2D5/2 and 2F7/2 manifolds in 171Yb+[J]. Physical Review A, 2021, 104: 012606, doi: 10.1103/PhysRevA.104.012606. |
| [26] |
Wang P F, Luan C Y, Qiao M, et al. Single ion qubit with estimated coherence time exceeding one hour[J]. Nature Communications, 2021, 12: 233, doi: 10.1038/s41467-020-20330-w.
PMID |
| [27] | DiVincenzo D P. Topics in quantum computers[M]// Mesoscopic Electron Transport. Dordrecht: Springer Netherlands, 1997: 657-677. |
| [28] |
Divincenzo D P. The physical implementation of quantum computation[J]. Fortschritte der Physik, 2000, 48(9-11): 771-783.
DOI URL |
| [29] | Harty T P, Allcock D T C, Ballance C J, et al. High-fidelity preparation, gates, memory, and readout of a trapped-ion quantum bit[J]. Physical Review Letters, 2014, 113(22): 220501, doi: 10.1103/PhysRevLett.113.220501. |
| [30] |
Cirac J I, Zoller P. Quantum computations with cold trapped ions[J]. Physical Review Letters, 1995, 74(20): 4091-4094.
PMID |
| [31] |
Sørensen A, Sørensen K. Quantum computation with ions in thermal motion[J]. Physical Review Letters, 1999, 82(9): 1971-1974.
DOI URL |
| [32] |
Mølmer K, Sørensen A. Multiparticle entanglement of hot trapped ions[J]. Physical Review Letters, 1999, 82(9): 1835-1838.
DOI URL |
| [33] |
Milburn G J, Schneider S, James D F V. Ion trap quantum computing with warm ions[J]. Fortschritte der Physik, 2000, 48(9-11): 801-810.
DOI URL |
| [34] | Zhu S L, Monroe C, Duan L M. Trapped ion quantum computation with transverse phonon modes[J]. Physical Review Letters, 2006, 97(5): 050505, doi: 10.1103/PhysRevLett.97.050505. |
| [35] |
Zhu S L, Monroe C, Duan L M. Arbitrary-speed quantum gates within large ion crystals through minimum control of laser beams[J]. Europhysics Letters, 2006, 73(4): 485-491.
DOI URL |
| [36] | Choi T, Debnath S, Manning T A, et al. Optimal quantum control of multimode couplings between trapped ion qubits for scalable entanglement[J]. Physical Review Letters, 2014, 112(19): 190502, doi: 10.1103/PhysRevLett.112.190502. |
| [37] |
Lu Y, Zhang S N, Zhang K, et al. Global entangling gates on arbitrary ion qubits[J]. Nature, 2019, 572(7769): 363-367.
DOI |
| [38] | GreenT J, BiercukM J. Phase-modulated decoupling and error suppression in qubit-oscillator systems[J]. Physical Review Letters, 2015, 114(12): 120502, doi: 10.1103/PhysRevLett.114.120502. |
| [39] | Wang Y, Crain S, Fang C, et al. High-fidelity two-qubit gates using a microelectromechanical-system-based beam steering system for individual qubit addressing[J]. Physical Review Letters, 2020, 125(15): 150505, doi: 10.1103/PhysRevLett.125.150505. |
| [40] | Leung P H, Landsman K A, Figgatt C, et al. Robust 2-qubit gates in a linear ion crystal using a frequency-modulated driving force[J]. Physical Review Letters, 2018, 120(2): 020501, doi: 10.1103/PhysRevLett.120.020501. |
| [41] |
Debnath S, Linke N M, Figgatt C, et al. Demonstration of a small programmable quantum computer with atomic qubits[J]. Nature, 2016, 536(7614): 63-66.
DOI |
| [42] | Chen J S, Nielsen E, Ebert M, et al. Benchmarking a trapped-ion quantum computer with 30 qubits[J]. Quantum, 2024, 8: 1516, doi: 10.22331/q-2024-11-07-1516. |
| [43] | Yao R, Lian W Q, Wu Y K, et al. Experimental realization of a multiqubit quantum memory in a 218-ion chain[J]. Physical Review A, 2022, 106(6): 062617, doi: 10.1103/PhysRevA.106.062617. |
| [44] |
Kielpinski D, Monroe C, Wineland D J. Architecture for a large-scale ion-trap quantum computer[J]. Nature, 2002, 417(6890): 709-711.
DOI |
| [45] | Decross M, Haghshenas R, Liu M, et al. Computational power of random quantum circuits in arbitrary geometries[J]. Physical Review X, 2025, 15(2): 021052, doi: 10.1103/PhysRevX.15.021052. |
| [46] | Moses S A, Baldwin C H, Allman M S, et al. A race-track trapped-ion quantum processor[J]. Physical Review X, 2023, 13(4): 041052, doi: 10.1103/PhysRevX.13.041052. |
| [47] |
Duan L M, Blinov B B, Moehring D L, et al. Scalable trapped ion quantum computation with a probabilistic ion-photon mapping[J]. Quantum Information and Computation, 2004, 4(3): 165-173.
DOI URL |
| [48] | Monroe C, Raussendorf R, Ruthven A, et al. Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects[J]. Physical Review A, 2014, 89(2): 022317, doi: 10.1103/PhysRevA.89.022317. |
| [49] |
Duan L M, Monroe C. Colloquium: Quantum networks with trapped ions[J]. Reviews of Modern Physics, 2010, 82(2): 1209-1224.
DOI URL |
| [50] |
Main D, Drmota P, Nadlinger D P, et al. Distributed quantum computing across an optical network link[J]. Nature, 2025, 638(8050): 383-388.
DOI |
| [51] | Stephenson L J, Nadlinger D P, Nichol B C, et al. High-rate, high-fidelity entanglement of qubits across an elementary quantum network[J]. Physical Review Letters, 2020, 124(11): 110501, doi: 10.1103/PhysRevLett.124.110501. |
| [52] | Kiesenhofer D, Hainzer H, Zhdanov A, et al. Controlling two-dimensional Coulomb crystals of more than 100 ions in a monolithic radio-frequency trap[J]. PRX Quantum, 2023, 4(2): 020317, doi: 10.1103/PRXQuantum.4.020317. |
| [53] | 段路明, 杨蒿翔. 一种寻址操控系统和寻址操控方法:CN2021100472182[P]. 2021-05-04. |
| Duan L M, Yang H X. An addressing control system and an addressing control method:CN2021100472182[P]. 2021-05-04. (in Chinese) | |
| [54] | Inlek I V, Crocker C, Lichtman M, et al. Multispecies trapped-ion node for quantum networking[J]. Physical review letters, 2017, 118(25): 250502, doi: 10.1103/PhysRevLett.118.250502. |
| [55] |
Ballance C J, Schäfer V M, Home J P, et al. Hybrid quantum logic and a test of Bell’s inequality using two different atomic isotopes[J]. Nature, 2015, 528(7582): 384-386.
DOI |
| [56] | Sosnova K, Carter A, Monroe C. Character of motional modes for entanglement and sympathetic cooling of mixed-species trapped-ion chains[J]. Physical Review A, 2021, 103(1): 012610, doi: 10.1103/PhysRevA.103.012610. |
| [57] |
Yang H X, Ma J Y, Wu Y K, et al. Realizing coherently convertible dual-type qubits with the same ion species[J]. Nature Physics, 2022, 18(9): 1058-1061.
DOI |
| [58] | Allcock DTC, Campbell W C, Chiaverini J, et al. Omg blueprint for trapped ion quan- tum computing with metastable states[J]. Applied Physics Letters, 2021, 119(21): 214002, doi: 10.1063/5.0069544. |
| [59] | Feng L, Huang Y Y, Wu Y K, et al. Realization of a crosstalk-avoided quantum network node using dual-type qubits of the same ion species[J]. Nature Communications, 2024, 15(1): 204, doi: 10.1038/s41467-023-44220-z. |
| [1] | LI Aixian, FAN Qiong, LIU Jing, LIU Yulong, WANG Haifeng, HAN Qingzhen, REN Weijuan. Research Status and Development Suggestions for Global Quantum Computing Technology [J]. Science and Technology Foresight, 2025, 4(4): 11-20. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
京公网安备 11010802038735号