[1] |
Der hydrogel und das kristallinische hydrat des kupferoxydes[J]. Zeitschrift Für Chemie und Industrie der Kolloide, 1907, 1(7): 213-214.
|
[2] |
Wichterle O, Lím D. Hydrophilic gels for biological use[J]. Nature, 1960, 185(4706): 117-118.
|
[3] |
Li X Y, Gong J P. Design principles for strong and tough hydrogels[J]. Nature Reviews Materials, 2024, 9: 380-398.
|
[4] |
Liu C, Morimoto N, Jiang L, et al. Tough hydrogels with rapid self-reinforcement[J]. Science, 2021, 372(6546): 1078-1081.
DOI
PMID
|
[5] |
Bao B K, Zeng Q M, Li K, et al. Rapid fabrication of physically robust hydrogels[J]. Nature Materials, 2023, 22(10): 1253-1260.
DOI
PMID
|
[6] |
Won D, Kim H, Kim J, et al. Laser-induced wet stability and adhesion of pure conducting polymer hydrogels[J]. Nature Electronics, 2024, 7: 475-486.
|
[7] |
Ma Z W, Bourquard C, Gao Q M, et al. Controlled tough bioadhesion mediated by ultrasound[J]. Science, 2022, 377(6607): 751-755.
DOI
PMID
|
[8] |
Yuk H, Varela C E, Nabzdyk C S, et al. Dry double-sided tape for adhesion of wet tissues and devices[J]. Nature, 2019, 575(7781): 169-174.
|
[9] |
Wang C H, Chen X Y, Wang L, et al. Bioadhesive ultrasound for long-term continuous imaging of diverse organs[J]. Science, 2022, 377(6605): 517-523.
DOI
PMID
|
[10] |
Li P, Poon Y F, Li W F, et al. A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability[J]. Nature Materials, 2011, 10(2): 149-156.
DOI
PMID
|
[11] |
Hu B H, Owh C, Chee P L, et al. Supramolecular hydrogels for antimicrobial therapy[J]. Chemical Society Reviews, 2018, 47(18): 6917-6929.
DOI
PMID
|
[12] |
Fu L L, Li L, Bian Q Y, et al. Cartilage-like protein hydrogels engineered via entanglement[J]. Nature, 2023, 618(7966): 740-747.
|
[13] |
Jin S B, Choi H, Seong D, et al. Injectable tissue prosthesis for instantaneous closed-loop rehabilitation[J]. Nature, 2023, 623(7985): 58-65.
|
[14] |
Günay K A, Chang T L, Skillin N P, et al. Photo-expansion microscopy enables super-resolution imaging of cells embedded in 3D hydrogels[J]. Nature Materials, 2023, 22(6): 777-785.
DOI
PMID
|
[15] |
Zhao Y S, Lo C Y, Ruan L C, et al. Somatosensory actuator based on stretchable conductive photothermally responsive hydrogel[J]. Science Robotics, 2021, 6(53): eabd5483, doi: 10.1126/scirobotics.abd5483.
|
[16] |
Li L, Scheiger J M, Levkin P A. Design and applications of photoresponsive hydrogels[J]. Advanced Materials, 2019, 31(26): e1807333, doi: 10.1002/adma.201807333.
|
[17] |
Wu P, Xu C, Zou X H, et al. Capacitive-coupling-responsive hydrogel scaffolds offering wireless in situ electrical stimulation promotes nerve regeneration[J]. Advanced Materials, 2024, 36(14): e2310483, doi: 10.1002/adma.202310483.
|
[18] |
Le X X, Shang H, Yan H Z, et al. A urease-containing fluorescent hydrogel for transient information storage[J]. Angewandte Chemie, 2021, 60(7): 3640-3646.
|
[19] |
Li Z, Liu P C, Ji X F, et al. Bioinspired simultaneous changes in fluorescence color, brightness, and shape of hydrogels enabled by AIEgens[J]. Advanced Materials, 2020, 32(11): e1906493, doi: 10.1002/adma.201906493.
|
[20] |
Park J, Pramanick S, Park D, et al. Therapeutic-gas-responsive hydrogel[J]. Advanced Materials, 2017, 29(44): 1702859, doi: 10.1002/adma.201702859.
|
[21] |
Zhou Y, Wang S C, Peng J Q, et al. Liquid thermo-responsive smart window derived from hydrogel[J]. Joule, 2020, 4(11): 2458-2474.
|
[22] |
Liu G W, Pickett M J, Kuosmanen J L P, et al. Drinkable in situ-forming tough hydrogels for gastrointestinal therapeutics[J]. Nature Materials, 2024, 23(9): 1292-1299.
DOI
PMID
|
[23] |
Bianco S, Hasan M, Ahmad A, et al. Mechanical release of homogenous proteins from supramolecular gels[J]. Nature, 2024, 631(8021): 544-548.
|
[24] |
Zhong R B, Talebian S, Mendes B B, et al. Hydrogels for RNA delivery[J]. Nature Materials, 2023, 22(7): 818-831.
DOI
PMID
|
[25] |
Gantenbein S, Colucci E, Käch J, et al. Three-dimensional printing of mycelium hydrogels into living complex materials[J]. Nature Materials, 2023, 22(1): 128-134.
DOI
PMID
|
[26] |
Choi S, Lee K Y, Kim S L, et al. Fibre-infused gel scaffolds guide cardiomyocyte alignment in 3D-printed ventricles[J]. Nature Materials, 2023, 22(8): 1039-1046.
DOI
PMID
|
[27] |
Grigoryan B, Paulsen S J, Corbett D C, et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels[J]. Science, 2019, 364(6439): 458-464.
DOI
PMID
|
[28] |
Xiao W Y, Wan X Z, Shi L X, et al. A viscous-biofluid self-pumping organohydrogel dressing to accelerate diabetic wound healing[J]. Advanced Materials, 2024, 36(25): e2401539, doi: 10.1002/adma.202401539.
|
[29] |
Guo B L, Dong R N, Liang Y P, et al. Haemostatic materials for wound healing applications[J]. Nature Reviews Chemistry, 2021, 5(11): 773-791.
DOI
PMID
|
[30] |
Yang Z X, An Y, He Y L, et al. A programmable actuator as synthetic earthworm[J]. Advanced Materials, 2023, 35(36): e2303805, doi: 10.1002/adma.202303805.
|
[31] |
Saha A, Sekharan S, Manna U. Superabsorbent hydrogel (SAH) as a soil amendment for drought management: A review[J]. Soil and Tillage Research, 2020, 204: 104736, doi: 10.1016/j.still.2020.104736.
|
[32] |
Yi J Q, Zou G J, Huang J P, et al. Water-responsive supercontractile polymer films for bioelectronic interfaces[J]. Nature, 2023, 624(7991): 295-302.
|
[33] |
Zhang Y J, Tan C M J, Toepfer C N, et al. Microscale droplet assembly enables biocompatible multifunctional modular iontronics[J]. Science, 2024, 386(6725): 1024-1030.
|
[34] |
Park B, Shin J H, Ok J, et al. Cuticular pad-inspired selective frequency damper for nearly dynamic noise-free bioelectronics[J]. Science, 2022, 376(6593): 624-629.
DOI
PMID
|
[35] |
Dobashi Y, Yao D, Petel Y, et al. Piezoionic mechanoreceptors: Force-induced current generation in hydrogels[J]. Science, 2022, 376(6592): 502-507.
DOI
PMID
|
[36] |
Tang H C, Yang Y Y, Liu Z, et al. Injectable ultrasonic sensor for wireless monitoring of intracranial signals[J]. Nature, 2024, 630(8015): 84-90.
|
[37] |
Na H, Kang Y W, Park C S, et al. Hydrogel-based strong and fast actuators by electroosmotic turgor pressure[J]. Science, 2022, 376(6590): 301-307.
DOI
PMID
|
[38] |
Downs F G, Lunn D J, Booth M J, et al. Multi-responsive hydrogel structures from patterned droplet networks[J]. Nature Chemistry, 2020, 12(4): 363-371.
DOI
PMID
|
[39] |
Wang X, Pan C F, Xia N, et al. Fracture-driven power amplification in a hydrogel launcher[J]. Nature Materials, 2024, 23(10): 1428-1435.
DOI
PMID
|
[40] |
Tan J, Kang B, Kim K, et al. Hydrogel protection strategy to stabilize water-splitting photoelectrodes[J]. Nature Energy, 2022, 7: 537-547.
|
[41] |
Zhang M C, Pal A, Zheng Z Q, et al. Hydrogel muscles powering reconfigurable micro-metastructures with wide-spectrum programmability[J]. Nature Materials, 2023, 22(10): 1243-1252.
DOI
PMID
|