[1] |
Gorum A E, Parker E R, Pask J A. Effect of surface conditions on room-temperature ductility of ionic crystals[J]. Journal of the American Ceramic Society, 1958, 41(5): 161-164.
|
[2] |
Brunner D, Taeri-Baghbadrani S, Sigle W, et al. Surprising results of a study on the plasticity in strontium titanate[J]. Journal of the American Ceramic Society, 2001, 84(5): 1161-1163.
|
[3] |
Mark A F, Castillo-Rodriguez M, Sigle W. Unexpected plasticity of potassium niobate during compression between room temperature and 900 ℃[J]. Journal of the European Ceramic Society, 2016, 36(11): 2781-2793.
|
[4] |
Fang X F, Zhang J W, Frisch A, et al. Room-temperature bulk plasticity and tunable dislocation densities in KTaO3[J]. Journal of the American Ceramic Society, 2024, 107(11): 7054-7061.
|
[5] |
Shen C, Li J, Niu T J, et al. Achieving room temperature plasticity in brittle ceramics through elevated temperature preloading[J]. Science Advances, 2024, 10(16): eadj4079, doi: 10.1126/sciadv.adj4079.
|
[6] |
Fang X F, Lu W J, Zhang J W, et al. Harvesting room-temperature plasticity in ceramics by mechanically seeded dislocations[J]. Materials Today, 2025, 82: 81-91.
|
[7] |
Karch J, Birringer R, Gleiter H. Ceramics ductile at low temperature[J]. Nature, 1987, 330(6148): 556-558.
|
[8] |
Waku Y, Nakagawa N, Wakamoto T, et al. A ductile ceramic eutectic composite with high strength at 1 873 K[J]. Nature, 1997, 389(6646): 49-52.
|
[9] |
Kim B N, Hiraga K, Morita K, et al. A high-strain-rate superplastic ceramic[J]. Nature, 2001, 413(6853): 288-291.
|
[10] |
Zhang J, Liu G H, Cui W, et al. Plastic deformation in silicon nitride ceramics via bond switching at coherent interfaces[J]. Science, 2022, 378(6618): 371-376.
DOI
PMID
|
[11] |
薛其坤. 陶瓷也能像金属一样塑性变形?[J]. 科学通报, 2023, 68(2/3):140-141.
|
|
Xue Q K. Can ceramics plastically deform like metals?[J]. Chinese Science Bulletin, 2023, 68(2/3):140-141. (in Chinese)
|
[12] |
Tang Y, Wang H K, Ouyang X P, et al. Overcoming strength-ductility tradeoff with high pressure thermal treatment[J]. Nature Communications, 2024, 15(1): 3932, doi: 10.1038/s41467-024-48435-6.
|
[13] |
Wu Y J, Zhang Y, Wang X Y, et al. Twisted-layer boron nitride ceramic with high deformability and strength[J]. Nature, 2024, 626(8000): 779-784.
|
[14] |
Dong L R, Zhang J, Li Y Z, et al. Borrowed dislocations for ductility in ceramics[J]. Science, 2024, 385(6707): 422-427.
DOI
PMID
|
[15] |
Aoki Y, Masuda H, Tochigi E, et al. Overcoming the intrinsic brittleness of high-strength Al2O3-GdAlO3 ceramics through refined eutectic microstructure[J]. Nature Communications, 2024, 15(1): 8700, doi: 10.1038/s41467-024-53026-6.
|
[16] |
Shi X, Chen H Y, Hao F, et al. Room-temperature ductile inorganic semiconductor[J]. Nature Materials, 2018, 17(5): 421-426.
DOI
PMID
|
[17] |
Wei T R, Jin M, Wang Y C, et al. Exceptional plasticity in the bulk single-crystalline van der Waals semiconductor InSe[J]. Science, 2020, 369(6503): 542-545.
|
[18] |
Yang Q Y, Yang S Q, Qiu P F, et al. Flexible thermoelectrics based on ductile semiconductors[J]. Science, 2022, 377(6608): 854-858.
DOI
PMID
|
[19] |
Qiu P F, Deng T T, Chen L D, et al. Plastic inorganic thermoelectric materials[J]. Joule, 2024, 8(3): 622-634.
|
[20] |
Deng T T, Gao Z Q, Li Z, et al. Room-temperature exceptional plasticity in defective Bi2Te3-based bulk thermoelectric crystals[J]. Science, 2024, 386(6726): 1112-1117.
|
[21] |
Zhao P, Xue W H, Zhang Y, et al. Plasticity in single-crystalline Mg3Bi2 thermoelectric material[J]. Nature, 2024, 631(8022): 777-782.
|