[1] |
Prameela E S, Pollock T M, Raabe D, et al. Materials for extreme environments[J]. Nature Reviews Materials, 2023, 8(2): 81-88.
|
[2] |
常可可, 陈雷雷, 周若男, 等. 极端环境表面工程及其共性科学问题研究进展[J]. 中国机械工程, 2022, 33(12): 1388-1417.
|
|
Chang K K, Chen L L, Zhou R N, et al. Progresses of surface engineering in extreme environments and its common scientific problems[J]. China Mechanical Engineering, 2022, 33(12): 1388-1417. (in Chinese)
DOI
|
[3] |
Melchers R E, Jeffrey R. Early corrosion of mild steel in seawater[J]. Corrosion Science, 2005, 47(7): 1678-1693.
|
[4] |
Pascarelli S, McMahon M, Pépin C, et al. Materials under extreme conditions using large X-ray facilities[J]. Nature Reviews Methods Primers, 2023, 3: 82, doi: 10.1038/s43586-023-00264-5.
|
[5] |
Li R Z, Cheng C Q, Pu J B, et al. Effect of CrN coating on the hot salt corrosion fatigue behavior of titanium alloy[J]. Corrosion Science, 2024, 240: 112448, doi: 10.1016/j.corsci.2024.112448.
|
[6] |
Lou M, Xu K, Chen L L, et al. Development of robust surfaces for harsh service environments from the perspective of phase formation and transformation[J]. Journal of Materials Informatics, 2021, 1(1), doi: 10.20517/jmi.2021.02.
|
[7] |
Li R Z, Wang S H, Pu J B, et al. Study of NaCl-induced hot-corrosion behavior of TiN single-layer and TiN/Ti multilayer coatings at 500 ℃[J]. Corrosion Science, 2021, 192: 109838, doi: 10.1016/j.corsci.2021.109838.
|
[8] |
Chen L L, Zhang Z Y, Lou M, et al. High-temperature wear mechanisms of TiNbWN films: Role of nanocrystalline oxides formation[J]. Friction, 2023, 11(3): 460-472.
|
[9] |
Lou M, Chen X, Xu K, et al. Temperature-induced wear transition in ceramic-metal composites[J]. Acta Materialia, 2021, 205: 116545, doi: org/10.1016/j.actamat.2020.116545.
|
[10] |
Magdy M, Hu Y B, Zhao J. A study of the morphological effect of an α-Al2O3 layer on the creep life for nickel-based superalloys using microstructure-based geometrical models[J]. Vacuum, 2022, 202: 111174, doi: 10.1016/j.vacuum.2022.111174.
|
[11] |
Schweizer P, Sharma A, Pethö L, et al. Atomic scale volume and grain boundary diffusion elucidated by in situ STEM[J]. Nature Communications, 2023, 14(1): 7601, doi: 10.1038/s41467-023-43103-7.
|
[12] |
Li R Z, Pu J B, Cheng C Q, et al. Effect of hot corrosion on cycle deformation and fracture behavior of Ti-6Al-4V alloy under salt coating[J]. Corrosion Science, 2023, 224: 111545, doi: 10.1016/j.corsci.2023.111545.
|
[13] |
Ustrzycka A, Dominguez-Gutierrez F J, Chromiński W. Atomistic analysis of the mechanisms underlying irradiation-hardening in Fe-Ni-Cr alloys[J]. International Journal of Plasticity, 2024, 182: 104118, doi: 10.1016/j.ijplas.2024.104118.
|
[14] |
Zou L F, Li J, Zakharov D, et al. In situ atomic-scale imaging of the metal/oxide interfacial transformation[J]. Nature Communications, 2017, 8: 307, doi: 10.1038/s41467-017-00371-4.
|
[15] |
Hao Y, Wang L P, Huang L F. Lanthanide-doped MoS2 with enhanced oxygen reduction activity and biperiodic chemical trends[J]. Nature Communications, 2023, 14(1): 3256, doi: 10.1038/s41467-023-39100-5.
|
[16] |
Herbig M, Raabe D, Li Y J, et al. Atomic-scale quantification of grain boundary segregation in nanocrystalline material[J]. Physical Review Letters, 2014, 112(12): 126103, doi: 10.1103/PhysRevLett.112.126103.
|
[17] |
Du B N, Hu Z Y, Sheng L Y, et al. Tensile, creep behavior and microstructure evolution of an as-cast Ni-based K417G polycrystalline superalloy[J]. Journal of Materials Science & Technology, 2018, 34(10): 1805-1816.
|
[18] |
Ren S M, Cui M J, Martini A, et al. Macroscale superlubricity enabled by rationally designed MoS2-based superlattice films[J]. Cell Reports Physical Science, 2023, 4(5): 101390, doi: 10.1016/j.xcrp.2023.101390.
|
[19] |
Burov A, Fedorova E. Modeling of interface failure in a thermal barrier coating system on Ni-based superalloys[J]. Engineering Failure Analysis, 2021, 123: 105320, doi: 10.1016/j.engfailanal.2021.105320.
|
[20] |
Zhou S W, Rabczuk T, Zhuang X Y. Phase field modeling of quasi-static and dynamic crack propagation: COMSOL implementation and case studies[J]. Advances in Engineering Software, 2018, 122: 31-49.
|
[21] |
Fujii T, Tohgo K, Mori Y, et al. Crystallographic and mechanical investigation of intergranular stress corrosion crack initiation in austenitic stainless steel[J]. Materials Science and Engineering: A, 2019, 751: 160-170.
|
[22] |
吴连生. 海洋装备钛合金三维疲劳裂纹扩展研究[D]. 无锡: 江南大学, 2022.
|
|
Wu L S. Study on three-dimensional fatigue crack propagation of titanium alloy for marine equipment[D]. Wuxi: Jiangnan University, 2022. (in Chinese)
|
[23] |
Adamson R B, Coleman C E, Griffiths M. Irradiation creep and growth of zirconium alloys: A critical review[J]. Journal of Nuclear Materials, 2019, 521: 167-244.
DOI
|
[24] |
Ponciroli R, Shriwise P, Mei Z G, et al. Simulation-based methodology to assess the lattice defects creation as energy storing process[J]. Annals of Nuclear Energy, 2022, 165: 108691, doi: 10.1016/j.anucene.2021.108691.
|
[25] |
Abernethy R G, Gibson J S K, Giannattasio A, et al. Effects of neutron irradiation on the brittle to ductile transition in single crystal tungsten[J]. Journal of Nuclear Materials, 2019, 527: 151799, doi: 10.1016/j.jnucmat.2019.151799.
|
[26] |
Xu K, Xiao X L, Wang L J, et al. Data-driven materials research and development for functional coatings[J]. Advanced Science, 2024, 11(42): e2405262, doi: 10.1002/advs.202405262.
|
[27] |
Li C H, Xu K, Lou M, et al. Machine learning-enabled prediction of high-temperature oxidation resistance for Ni-based alloys[J]. Corrosion Science, 2024, 234: 112152, doi: 10.1016/j.corsci.2024.112152.
|
[28] |
Shi Y B, Zhang J, Pu J B, et al. Robust macroscale superlubricity enabled by tribo-induced structure evolution of MoS2/metal superlattice coating[J]. Composites Part B: Engineering, 2023, 250: 110460, doi: 10.1016/j.compositesb.2022.110460.
|
[29] |
Zhu X B, Zhang W J, Lu G M, et al. Ultrahigh mechanical strength and robust room-temperature self-healing properties of a polyurethane-graphene oxide network resulting from multiple dynamic bonds[J]. ACS Nano, 2022, 16(10): 16724-16735.
DOI
PMID
|
[30] |
Wang C, Li J J, Wang T, et al. Microstructure and properties of pure titanium coating on Ti-6Al-4V alloy by laser cladding[J]. Surface and Coatings Technology, 2021, 416: 127137, doi: 10.1016/j.surfcoat.2021.127137.
|
[31] |
Huang Z, Guo Z X, Liu L, et al. Structure and corrosion behavior of ultra-thick nitrided layer produced by plasma nitriding of austenitic stainless steel[J]. Surface and Coatings Technology, 2021, 405: 126689, doi: 10.1016/j.surfcoat.2020.126689.
|
[32] |
Tiwari V, Mandal V, Sarkar M, et al. Enhanced mechanical properties and microstructure of TiC reinforced Stellite 6 metal matrix composites (MMCs) via laser cladding additive manufacturing[J]. Journal of Alloys and Compounds, 2025, 1010: 178001, doi: 10.1016/j.jallcom.2024.178001.
|
[33] |
Lou M, Chen R, Xu K, et al. A self-organized sandwich structure of chromium nitride for ultra-long lifetime in liquid sodium[J]. Materials Horizons, 2024, 11(18): 4359-4366.
|