[1] |
韩恩厚, 陈建敏, 宿彦京, 等. 海洋工程材料和结构的腐蚀与防护[M]. 北京: 化学工业出版社, 2017.
|
|
Han E H, Chen J M, Su Y J, et at. Corrosion and protection for marine, offshore and coastal structures[M]. Beijing: Chemical Industry Press, 2017. (in Chinese)
|
[2] |
常辉. 海洋工程钛金属材料[M]. 北京: 化学工业出版社, 2017.
|
|
Chang H. Titanium alloys of marine applications[M]. Beijing: Chemical Industry Press, 2017. (in Chinese)
|
[3] |
Okabe T H, Oda T, Mitsuda Y. Titanium powder production by preform reduction process (PRP)[J]. Journal of Alloys and Compounds, 2004, 364(1/2): 156-163.
|
[4] |
Chen G Z, Fray D J, Farthing T W. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride[J]. Nature, 2000, 407(6802): 361-364.
|
[5] |
Schwandt C, Fray D J. Determination of the kinetic pathway in the electrochemical reduction of titanium dioxide in molten calcium chloride[J]. Electrochimica Acta, 2005, 51(1): 66-76.
|
[6] |
Schwandt C, Alexander D T L, Fray D J. The electro-deoxidation of porous titanium dioxide precursors in molten calcium chloride under cathodic potential control[J]. Electrochimica Acta, 2009, 54(14): 3819-3829.
|
[7] |
Schwandt C, Doughty G R, Fray D J. The FFC-Cambridge process for titanium metal winning[J]. Key Engineering Materials, 2010, 436: 13-25.
|
[8] |
Ono K, Suzuki R O. A new concept for producing Ti sponge: Calciothermic reduction[J]. Journal of Management, 2002, 54(2): 59-61.
|
[9] |
Suzuki R O, Fukui S. Reduction of TiO2 in molten CaCl2 by Ca deposited during CaO electrolysis[J]. Materials Transactions, 2004, 45(5): 1665-1671.
|
[10] |
Jiao S Q, Zhu H M. Novel metallurgical process for titanium production[J]. Journal of Materials Research, 2006, 21(9): 2172-2175.
|
[11] |
Jiao S Q, Ning X H, Huang K, et al. Electrochemical dissolution behavior of conductive TiCxO1-x solid solutions[J]. Pure and Applied Chemistry, 82(8): 1691-1699.
|
[12] |
Ning X H, Xiao J S, Jiao S Q, et al. Anodic dissolution of titanium oxycarbide TiCxO1-x with different O/C ratio[J]. Journal of the Electrochemical Society, 2019, 166(2): E22-E28.
|
[13] |
Guo X W, Ren Z K, Ma X B, et al. Effect of temperature and reduction ratio on the interface bonding properties of TC4/304 plates manufactured by EA rolling[J]. Journal of Manufacturing Processes, 2021, 64: 664-673.
|
[14] |
Shi C G, Yang X, Shi H S, et al. Manufacturing process and interface properties of vacuum rolling large-area titanium-steel cladding plate[J]. Russian Journal of Non-Ferrous Metals, 2019, 60(2): 152-161.
|
[15] |
Yu C, Qi Z C, Yu H, et al. Microstructural and mechanical properties of hot roll bonded titanium alloy/low carbon steel plate[J]. Journal of Materials Engineering and Performance, 2018, 27(4): 1664-1672.
|
[16] |
Li B X, He W J, Chen Z J, et al. Evolution of interface and collaborative deformation between Ti and steel during hot roll bonding[J]. Materials Characterization, 2020, 164: 110354, doi: 10.1016/j.matchar.2020.110354.
|
[17] |
Yang X, Shi C G, Fang Z H, et al. Application countermeasures of the manufacturing processes of titanium-steel composite plates[J]. Materials Research Express, 2019, 6(2): 26519, doi: 10.1088/2053-1591/aaebf0.
|
[18] |
Yang J L, Li X, Yao H B, et al. Interfacial features of stainless steel/titanium alloy multi-metal fabricated by laser additive manufacturing[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(8): 1357-1364.
|
[19] |
Ma W, Xu X, Xie Y S, et al. Microstructural evolution and anti-corrosion properties of laser cladded Ti based coating on Q235 steel[J]. Surface and Coatings Technology, 2024, 477: 130383, doi: 10.1016/j.surfcoat.2024.130383.
|
[20] |
Gao W, Wang S C, Hu K K, et al. Effect of laser cladding speed on microstructure and properties of titanium alloy coating on low carbon steel[J]. Surface and Coatings Technology, 2022, 451: 129029, doi: 10.1016/j.surfcoat.2022.129029.
|
[21] |
Hu K K, Jiang X Z, Yu H Y, et al. Solidification and corrosion mechanisms: A novel metallurgical bonding Ti-6Al-4V coating on mild steel[J]. Surface and Coatings Technology, 2024, 476: 130258, doi: 10.1016/j.surfcoat.2023.130258.
|
[22] |
Hu K K, Tian Y X, Jiang X Z, et al. Microstructure regulation and performance of titanium alloy coating with Ni interlayer on the surface of mild steel by laser cladding[J]. Surface and Coatings Technology, 2024, 487: 130939, doi: 10.1016/j.surfcoat.2024.130939.
|
[23] |
Gao W, Wang S C, Si J J, et al. Laser cladding of titanium alloy coating on low carbon steel via Cu interlayer[J]. Materials Science Forum, 2022, 1071: 80-90.
|