Science and Technology Foresight ›› 2025, Vol. 4 ›› Issue (1): 36-48.DOI: 10.3981/j.issn.2097-0781.2025.01.004
• Review and Commentary • Previous Articles Next Articles
LI Xiaoxi1,2,3,†(), HAN Zheng Vitto1,2,3
Received:
2025-01-10
Revised:
2025-02-18
Online:
2025-03-20
Published:
2025-03-27
Contact:
LI Xiaoxi
通讯作者:
李小茜
作者简介:
李小茜,山西大学光电研究所特聘副教授,辽宁材料实验室兼聘研究员。主要从事新型二维纳米人工复合体系研究。在Science、Nature Communications等期刊发表多篇论文。电子信箱:xiaoxili1987@sxu.edu.cn。
基金资助:
LI Xiaoxi, HAN Zheng Vitto. Research Progress and Development Recommendations on Quantum Devices Based on Two-Dimensional Atomic Crystal Heterostructures[J]. Science and Technology Foresight, 2025, 4(1): 36-48.
李小茜, 韩拯. 二维原子晶体异质结量子器件研究进展及发展建议[J]. 前瞻科技, 2025, 4(1): 36-48.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.qianzhankeji.cn/EN/10.3981/j.issn.2097-0781.2025.01.004
[1] |
Mounet N, Gibertini M, Schwaller P, et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds[J]. Nature Nanotechnology, 2018, 13(3): 246-252.
DOI PMID |
[2] |
Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
DOI PMID |
[3] | Weitz R T, Yacoby A. Graphene rests easy[J]. Nature Nanotechnology, 2010, 5(10): 699-700. |
[4] |
Dean C R, Young A F, Meric I, et al. Boron nitride substrates for high-quality graphene electronics[J]. Nature Nanotechnology, 2010, 5(10): 722-726.
DOI PMID |
[5] |
Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6(3): 147-150.
DOI PMID |
[6] |
Li L K, Yang F Y, Ye G J, et al. Quantum Hall effect in black phosphorus two-dimensional electron system[J]. Nature Nanotechnology, 2016, 11(7): 593-597.
DOI PMID |
[7] | Ares P, Palacios J J, Abellán G, et al. Recent progress on antimonene: A new bidimensional material[J]. Advanced Materials, 2018, 30(2): 1703771, doi: org/10.1002/adma.201703771. |
[8] | Gong C, Zhang X. Two-dimensional magnetic crystals and emergent heterostructure devices[J]. Science, 2019, 363(6428): eaav4450, doi: 10.1126/science.aav4450. |
[9] | Qi L, Ruan S C, Zeng Y J. Review on recent developments in 2D ferroelectrics: Theories and applications[J]. Advanced Materials, 2021, 33(13): e2005098, doi: 10.1002/adma.202005098. |
[10] | Dong B J, Yang T, Han Z. Flattening is flattering: The revolutionizing 2D electronic systems[J]. Chinese Physics B, 2020, 29(9): 97307, doi: 10.1088/1674-1056/aba605. |
[11] | Yankowitz M, Xue J M, Cormode D, et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride[J]. Nature Physics, 2012, 8: 382-386. |
[12] | Ponomarenko L A, Gorbachev R V, Yu G L, et al. Cloning of Dirac fermions in graphene superlattices[J]. Nature, 2013, 497(7451): 594-597. |
[13] |
Bistritzer R, MacDonald A H. Moire bands in twisted double-layer graphene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(30): 12233-12237.
DOI PMID |
[14] | Cao Y, Luo J Y, Fatemi V, et al. Superlattice-induced insulating states and valley-protected orbits in twisted bilayer graphene[J]. Physical Review Letters, 2016, 117(11): 116804, doi: 10.1103/PhysRevLett.117.116804. |
[15] | Cao Y, Fatemi V, Fang S A, et al. Unconventional superconductivity in magic-angle graphene superlattices[J]. Nature, 2018, 556(7699): 43-50. |
[16] | Guo Y J, Pack J, Swann J, et al. Superconductivity in 5.0° twisted bilayer WSe2[J]. Nature, 2025, 637(8047): 839-845. |
[17] | Kang K, Lee K H, Han Y M, et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures[J]. Nature, 2017, 550(7675): 229-233. |
[18] | Zhao B, Wan Z, Liu Y, et al. High-order superlattices by rolling up van der Waals heterostructures[J]. Nature, 2021, 591(7850): 385-390. |
[19] | Liu C, Wang X Z, Shen C, et al. A hot-emitter transistor based on stimulated emission of heated carriers[J]. Nature, 2024, 632(8026): 782-787. |
[20] |
Li T T, Guo W, Ma L, et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire[J]. Nature Nanotechnology, 2021, 16(11): 1201-1207.
DOI PMID |
[21] | Li W S, Gong X S, Yu Z H, et al. Approaching the quantum limit in two-dimensional semiconductor contacts[J]. Nature, 2023, 613(7943): 274-279. |
[22] | Liu Y, Guo J, Zhu E B, et al. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions[J]. Nature, 2018, 557(7707): 696-700. |
[23] |
Sharpe A L, Fox E J, Barnard A W, et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene[J]. Science, 2019, 365(6453): 605-608.
DOI PMID |
[24] |
Serlin M, Tschirhart C L, Polshyn H, et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure[J]. Science, 2020, 367(6480): 900-903.
DOI PMID |
[25] | Niu R R, Li Z X, Han X Y, et al. Giant ferroelectric polarization in a bilayer graphene heterostructure[J]. Nature Communications, 2022, 13(1): 6241, doi: 10.1038/s41467-022-34104-z. |
[26] | Li T X, Jiang S W, Shen B W, et al. Quantum anomalous Hall effect from intertwined moiré bands[J]. Nature, 2021, 600(7890): 641-646. |
[27] | Wang C, Zhang X W, Liu X, et al. Fractional Chern insulator in twisted bilayer MoTe2[J]. Physical Review Letters, 2024, 132(3): 036501, doi:10.1103/PhysRevLett.132.036501. |
[28] | Lu Z G, Han T H, Yao Y X, et al. Fractional quantum anomalous Hall effect in a graphene moire superlattice[DB/OL]. arXiv preprint: 2309.17436, 2023. |
[29] |
Liu X L, Hersam M C. 2D materials for quantum information science[J]. Nature Reviews Materials, 2019, 4: 669-684.
DOI |
[30] | Xu F, Sun Z, Jia T T, et al. Observation of integer and fractional quantum anomalous Hall effects in twisted bilayer MoTe2[J]. Physical Review X, 2023, 13: 031037, doi: 10.1103/PhysRevX.13.031037. |
[31] | Li C S, Xu F, Li B H, et al. Tunable superconductivity in electron- and hole-doped Bernal bilayer graphene[J]. Nature, 2024, 631(8020): 300-306. |
[32] |
Sha Y T, Zheng J, Liu K, et al. Observation of a Chern insulator in crystalline ABCA-tetralayer graphene with spin-orbit coupling[J]. Science, 2024, 384(6694): 414-419.
DOI PMID |
[33] | Zhou W Q, Ding J, Hua J N, et al. Layer-polarized ferromagnetism in rhombohedral multilayer graphene[J]. Nature Communications, 2024, 15(1): 2597, doi: 10.1038/s41467-024-46913-5. |
[34] |
Huang S Y, Yu B Y, Ma Y X, et al. Bright dipolar excitons in twisted black phosphorus homostructures[J]. Science, 2024, 386(6721): 526-531.
DOI PMID |
[35] |
Chen M Y, Xie Y Q, Cheng B, et al. Selective and quasi-continuous switching of ferroelectric Chern insulator devices for neuromorphic computing[J]. Nature Nanotechnology, 2024, 19(7): 962-969.
DOI PMID |
[36] | Ding J, Xiang H X, Zhou W Q, et al. Engineering band structures of two-dimensional materials with remote moiré ferroelectricity[J]. Nature Communications, 2024, 15(1): 9087, doi: 10.1038/s41467-024-53440-w. |
[37] | Wu F F, Xu Q L, Wang Q Q, et al. Giant correlated gap and possible room-temperature correlated states in twisted bilayer MoS2[J]. Physical Review Letters, 2023, 131(25): 256201, doi: 10.1103/PhysRevLett.131.256201. |
[38] | Wang M, Cai S H, Pan C, et al. Robust memristors based on layered two-dimensional materials[J]. Nature Electronics, 2018, 1: 130-136. |
[39] | Tang W H, Zhang X K, Yu H H, et al. A van der waals ferroelectric tunnel junction for ultrahigh-temperature operation memory[J]. Small Methods, 2022, 6(4): e2101583, doi: 10.1002/smtd.202101583. |
[40] | Tao R, Li L, Xie H Y, et al. Josephson-Coulomb drag effect between graphene and a LaAlO3/SrTiO3 superconductor[J]. Nature Physics, 2023, 19: 372-378. |
[41] | Wang J Y, Huang J W, Kaplan D, et al. Even-integer quantum Hall effect in an oxide caused by a hidden Rashba effect[J]. Nature Nanotechnology, 2024, 19(10): 1452-1459. |
[42] | Zhao S W, Huang J Q, Crépel V, et al. Fractional quantum Hall phases in high-mobility n-type molybdenum disulfide transistors[J]. Nature Electronics, 2024, 7: 1117-1125. |
[43] |
Hu Q Y, Zhan Z, Cui H Y, et al. Observation of rydberg moiré excitons[J]. Science, 2023, 380(6652): 1367-1372.
DOI PMID |
[44] | Li Q, Cheng B, Chen M Y, et al. Tunable quantum criticalities in an isospin extended Hubbard model simulator[J]. Nature, 2022, 609(7927): 479-484. |
[45] | Healey A J, Scholten S C, Yang T, et al. Quantum microscopy with van der Waals heterostructures[J]. Nature Physics, 2023, 19: 87-91. |
[46] | Tang H N, Wang Y T, Ni X Q, et al. On-chip multi-degree-of-freedom control of two-dimensional materials[J]. Nature, 2024, 632(8027): 1038-1044. |
[47] | Zhang T Y, Wang H W, Xia X X, et al. A monolithically sculpted van der Waals nano-opto-electro-mechanical coupler[J]. Light, Science & Applications, 2022, 11(1): 48, doi: 10.1038/s41377-022-00734-7. |
[48] | Zhang Z Z, Song X X, Luo G, et al. Electrotunable artificial molecules based on van der Waals heterostructures[J]. Science Advances, 2017, 3(10): e1701699, doi: 10.1126/sciadv.1701699. |
[49] | Butseraen G, Ranadive A, Aparicio N, et al. A gate-tunable graphene Josephson parametric amplifier[J]. Nature Nanotechnology, 2022, 17(11): 1153-1158. |
[50] | Sarkar J, Salunkhe K V, Mandal S, et al. Quantum-noise-limited microwave amplification using a graphene Josephson junction[J]. Nature Nanotechnology, 2022, 17(11): 1147-1152. |
[51] |
Wang J I, Rodan-Legrain D, Bretheau L, et al. Coherent control of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures[J]. Nature Nanotechnology, 2019, 14(2): 120-125.
DOI PMID |
[52] | Wang Y N, Gao X, Yang K N, et al. Quantum Hall phase in graphene engineered by interfacial charge coupling[J]. Nature Nanotechnology, 2022, 17(12): 1272-1279. |
[53] |
Lu X, Zhang S H, Wang Y N, et al. Synergistic correlated states and nontrivial topology in coupled graphene-insulator heterostructures[J]. Nature Communications, 2023, 14: 5550, doi: 10.1038/s41467-023-41293-8.
PMID |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京公网安备 11010802038735号