Science and Technology Foresight ›› 2024, Vol. 3 ›› Issue (3): 97-110.DOI: 10.3981/j.issn.2097-0781.2024.03.008
• Review and Commentary • Previous Articles Next Articles
CHENG Xing,*(), LI Tong,*(
), SI Zhichun, GAN Lin, LÜ Wei, KANG Feiyu†(
)
Received:
2024-06-24
Revised:
2024-07-01
Online:
2024-09-20
Published:
2024-09-18
Contact:
†
About author:
* Equivalent contribution author
程醒,*(), 李曈,*(
), 司知蠢, 干林, 吕伟, 康飞宇†(
)
通讯作者:
†
作者简介:
程醒,博士。主要从事高镍正极材料结构改性及匹配聚合物固态电解质等研究。电子信箱:chengxing@sz.tsinghua.edu.cn。基金资助:
CHENG Xing, LI Tong, SI Zhichun, GAN Lin, LÜ Wei, KANG Feiyu. Status and Prospect on Micro-nano Superstructured Carbon for Energy Storage and Conversion[J]. Science and Technology Foresight, 2024, 3(3): 97-110.
程醒, 李曈, 司知蠢, 干林, 吕伟, 康飞宇. 能源存储与转化用微纳超结构碳:现状与建议[J]. 前瞻科技, 2024, 3(3): 97-110.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.qianzhankeji.cn/EN/10.3981/j.issn.2097-0781.2024.03.008
Fig. 3 Structure composed of high-capacitance (>6.8 mA·h/cm2) LiNi0.9Co0.05Mn0.05O2 (NMC) cathode electrode, sulfide solid electrolyte, and Ag-C nanocomposite anode electrode requiring no excessive lithium
[1] | Kong D B, Lü W, Liu R L, et al. Superstructured carbon materials: Design and energy applications[J]. Energy Materials and Devices, 2023, 1(2), doi: 10.26599/emd.2023.9370017. |
[2] | Zhao L, Ding B C, Qin X Y, et al. Revisiting the roles of natural graphite in ongoing lithium-ion batteries[J]. Advanced Materials, 2022, 34(18), doi: 10.1002/adma.202106704. |
[3] | Cheng Y W, Lin C K, Chu Y C, et al. Electrically conductive ultrananocrystalline diamond-coated natural graphite-copper anode for new long life lithium-ion battery[J]. Advanced Materials, 2014, 26(22): 3724-3729. |
[4] | Yoshio M, Wang H Y, Fukuda K. Spherical carbon-coated natural graphite as a lithium-ion battery-anode material[J]. Angewandte Chemie (International Ed in English), 2003, 42(35): 4203-4206. |
[5] | Cai W L, Yan C, Yao Y X, et al. Rapid lithium diffusion in Order@Disorder pathways for fast-charging graphite anodes[J]. Small Structures, 2020, 1(1), doi: 10.1002/sstr.202070001. |
[6] | Jia H P, Li X L, Song J H, et al. Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance lithium-ion battery anodes[J]. Nature Communications, 2020, 11, doi: 10.1038/s41467-020-15217-9. |
[7] |
Liu N, Wu H, Mcdowell M T, et al. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes[J]. Nano Letters, 2012, 12(6): 3315-3321.
DOI PMID |
[8] |
Liu N, Lu Z D, Zhao J, et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes[J]. Nature Nanotechnology, 2014, 9: 187-192.
DOI PMID |
[9] | Xu D W, Chu X D, He Y B, et al. Enhanced performance of interconnected LiFePO4/C microspheres with excellent multiple conductive network and subtle mesoporous structure[J]. Electrochimica Acta, 2015, 152: 398-407. |
[10] | Park S, Oh J, Kim J M, et al. Facile preparation of cellulose nanofiber derived carbon and reduced graphene oxide co-supported LiFePO4 nanocomposite as enhanced cathode material for lithium-ion battery[J]. Electrochimica Acta, 2020, 354, doi: 10.1016/j.electacta.2020.136707. |
[11] | Lalia B S, Shah T, Hashaikeh R. Microbundles of carbon nanostructures as binder free highly conductive matrix for LiFePO4 battery cathode[J]. Journal of Power Sources, 2015, 278: 314-319. |
[12] | Komaba S, Murata W, Ishikawa T, et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries[J]. Advanced Functional Materials, 2011, 21(20): 3859-3867. |
[13] | Xu T Y, Qiu X, Zhang X, et al. Regulation of surface oxygen functional groups and pore structure of bamboo-derived hard carbon for enhanced sodium storage performance[J]. Chemical Engineering Journal, 2023, 452, doi: 10.1016/j.cej.2022.139514. |
[14] | Zhang S W, Lü W, Luo C, et al. Commercial carbon molecular sieves as a high performance anode for sodium-ion batteries[J]. Energy Storage Materials, 2016, 3: 18-23. |
[15] | Li Q, Liu X, Tao Y, et al. Sieving carbons promise practical anodes with extensible low-potential plateaus for sodium batteries[J]. National Science Review, 2022, 9(8), doi: 10.1093/nsr/nwac084. |
[16] | Shang L, Yuan R L, Liu H Y, et al. Precursor screening of fruit shell derived hard carbons for low-potential sodium storage: A low lignin content supports the formation of closed pores[J]. Carbon, 2024, 223, doi: 10.1016/j.carbon.2024.119038. |
[17] | Yamamoto H, Muratsubaki S, Kubota K, et al. Synthesizing higher-capacity hard-carbons from cellulose for Na- and K-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(35): 16844-16848. |
[18] |
Alvin S, Yoon D, Chandra C, et al. Revealing sodium ion storage mechanism in hard carbon[J]. Carbon, 2019, 145: 67-81.
DOI |
[19] | Zhang B, Ghimbeu C M, Laberty C, et al. Correlation between microstructure and Na storage behavior in hard carbon[J]. Advanced Energy Materials, 2016, 6(1), doi: 10.1002/aenm.201501588. |
[20] | Xu F, Tang Z W, Huang S Q, et al. Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage[J]. Nature Communications, 2015, 6, doi: 10.1038/ncomms8221. |
[21] | Lei Y, Huang Z H, Yang Y, et al. Porous mesocarbon microbeads with graphitic shells: Constructing a high-rate, high-capacity cathode for hybrid supercapacitor[J]. Scientific Reports, 2013, 3, doi: 10.1038/srep02477. |
[22] | Ye L, Liang Q H, Lei Y, et al. A high performance Li-ion capacitor constructed with Li4Ti5O12/C hybrid and porous graphene macroform[J]. Journal of Power Sources, 2015, 282: 174-178. |
[23] | 任晓龙. 锂离子电容器钒基氧化物碳复合电极材料的研究[D]. 北京: 清华大学, 2020. |
Ren X L. Research on vanadium-based oxide-carbon composite electrode materials for lithium-ion capacitors[D]. Beijing: Tsinghua University, 2020. (in Chinese) | |
[24] | Zhan C Z, Liu W, Hu M X, et al. High-performance sodium-ion hybrid capacitors based on an interlayer-expanded MoS2/rGO composite: Surpassing the performance of lithium-ion capacitors in a uniform system[J]. NPG Asia Materials, 2018, 10: 775-787. |
[25] | Chen L H, Zhang J, Tong R A, et al. Excellent Li/garnet interface wettability achieved by porous hard carbon layer for solid state Li metal battery[J]. Small, 2022, 18(8), doi: 10.1002/smll.202106142. |
[26] | Lee Y G, Fujiki S, Jung C, et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes[J]. Nature Energy, 2020, 5: 299-308. |
[27] | Liu Y, An X F, Yang K, et al. Achieving a high loading of cathode in PVDF-based solid-state battery[J]. Energy & Environmental Science, 2024, 17(1): 344-353. |
[28] | Gomari S, Esfandeh M, Ghasemi I. All-solid-state flexible nanocomposite polymer electrolytes based on poly (ethylene oxide): Lithium perchlorate using functionalized graphene[J]. Solid State Ionics, 2017, 303: 37-46. |
[29] | Zhai P B, Yang Z L, Wei Y, et al. Two-dimensional fluorinated graphene reinforced solid polymer electrolytes for high-performance solid-state lithium batteries[J]. Advanced Energy Materials, 2022, 12(42), doi: 10.1002/aenm.202200967. |
[30] | Xu C J, Li B H, Du H D, et al. Energetic zinc ion chemistry: The rechargeable zinc ion battery[J]. Angewandte Chemie (International Ed in English), 2012, 51(4): 933-935. |
[31] | Lee J H, Kim R, Kim S, et al. Dendrite-free Zn electrodeposition triggered by interatomic orbital hybridization of Zn and single vacancy carbon defects for aqueous Zn-based flow batteries[J]. Energy & Environmental Science, 2020, 13(9): 2839-2848. |
[32] | Mu Y B, Li Z, Wu B K, et al. 3D hierarchical graphene matrices enable stable Zn anodes for aqueous Zn batteries[J]. Nature Communications, 2023, 14, doi: 10.1038/s41467-023-39947-8. |
[33] | Zhang H, Luo Z, Deng W T, et al. Interfacial reconstruction via electronegative sulfonated carbon dots in hybrid electrolyte for ultra-durable zinc battery[J]. Chemical Engineering Journal, 2023, 461, doi: 10.1016/j.cej.2023.142105. |
[34] | Nian Q S, Sun T J, Li Y C, et al. Regulating frozen electrolyte structure with colloidal dispersion for low temperature aqueous batteries[J]. Angewandte Chemie (International Ed in English), 2023, 62(9), doi: 10.1002/anie.202217671. |
[35] | Padgett E, Andrejevic N, Liu Z Y, et al. Editors’ choice—Connecting fuel cell catalyst nanostructure and accessibility using quantitative cryo-STEM tomography[J]. Journal of the Electrochemical Society, 2018, 165(3): F173-F180. |
[36] |
Girod R, Lazaridis T, Gasteiger H A, et al. Three-dimensional nanoimaging of fuel cell catalyst layers[J]. Nature Catalysis, 2023, 6: 383-391.
DOI PMID |
[37] | Yarlagadda V, Carpenter M K, Moylan T E, et al. Boosting fuel cell performance with accessible carbon mesopores[J]. ACS Energy Letters, 2018, 3(3): 618-621. |
[38] |
Ott S, Orfanidi A, Schmies H, et al. Ionomer distribution control in porous carbon-supported catalyst layers for high-power and low Pt-loaded proton exchange membrane fuel cells[J]. Nature Materials, 2020, 19: 77-85.
DOI PMID |
[39] |
Jiao L, Li J K, Richard L L, et al. Chemical vapour deposition of Fe-N-C oxygen reduction catalysts with full utilization of dense Fe-N4 sites[J]. Nature Materials, 2021, 20: 1385-1391.
DOI PMID |
[40] | Wan X, Liu X F, Li Y C, et al. Fe-N-C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells[J]. Nature Catalysis, 2019, 2: 259-268. |
[41] | Padgett E, Yarlagadda V, Holtz M E, et al. Mitigation of PEM fuel cell catalyst degradation with porous carbon supports[J]. Journal of the Electrochemical Society, 2019, 166(4): F198-F207. |
[42] | Yang C L, Wang L N, Yin P, et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells[J]. Science, 2021, 374(6566): 459-464. |
[43] | Xiao F, Wang Q, Xu G L, et al. Atomically dispersed Pt and Fe sites and Pt-Fe nanoparticles for durable proton exchange membrane fuel cells[J]. Nature Catalysis, 2022, 5: 503-512. |
[44] | Li J K, Sougrati M T, Zitolo A, et al. Identification of durable and non-durable FeNx sites in Fe-N-C materials for proton exchange membrane fuel cells[J]. Nature Catalysis, 2021, 4: 10-19. |
[45] | Wei J, Xia D S, Wei Y P, et al. Probing the oxygen reduction reaction intermediates and dynamic active site structures of molecular and pyrolyzed Fe-N-C electrocatalysts by in situ Raman spectroscopy[J]. ACS Catalysis, 2022, 12(13): 7811-7820. |
[46] | Xia D S, Tang X, Dai S, et al. Ultrastable Fe-N-C fuel cell electrocatalysts by eliminating non-coordinating nitrogen and regulating coordination structures at high temperatures[J]. Advanced Materials, 2023, 35(5), doi: 10.1002/adma.202204474. |
[47] | Zhang X Y, Li L, Cheng K, et al. Directional interface electron transfer from Fe2O3 to biomass-derived carbon originated from F-dopant-induced site-specific growth[J]. Carbon, 2024, 216, doi: 10.1016/j.carbon.2023.118513. |
[48] | Li J C, Hou P X, Zhao S Y, et al. A 3D bi-functional porous N-doped carbon microtube sponge electrocatalyst for oxygen reduction and oxygen evolution reactions[J]. Energy & Environmental Science, 2016, 9(10): 3079-3084. |
[49] | Jeon D, Park J, Shin C, et al. Superaerophobic hydrogels for enhanced electrochemical and photoelectrochemical hydrogen production[J]. Science Advances, 2020, 6(15), doi: 10.1126/sciadv.aaz3944. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京公网安备 11010802038735号