[1] |
姚军, 孙海, 李爱芬, 等. 现代油气渗流力学体系及其发展趋势[J]. 科学通报, 2018, 63(4): 425-451.
|
[2] |
Blunt M J, Bijeljic B, Dong H, et al. Pore-scale imaging and modelling[J]. Advances in Water Resources, 2013, 51: 197-216.
DOI
URL
|
[3] |
Zhao J L, Yao J, Zhang L, et al. Pore-scale simulation of shale gas production considering the adsorption effect[J]. International Journal of Heat and Mass Transfer, 2016, 103: 1098-1107.
DOI
URL
|
[4] |
Duan L A, Sun H, Zhang L, et al. A method for pore-scale simulation of single-phase shale oil flow based on three-dimensional digital cores with hybrid mineral phases[J]. Physics of Fluids, 2022, 34(6), doi:10.1063/5.0095965.
DOI
|
[5] |
Song W H, Yao J, Ma J S, et al. Assessing relative contributions of transport mechanisms and real gas properties to gas flow in nanoscale organic pores in shales by pore network modelling[J]. International Journal of Heat and Mass Transfer, 2017, 113: 524-537.
DOI
URL
|
[6] |
Song W H, Liu L J, Wang D Y, et al. Nanoscale confined multicomponent hydrocarbon thermodynamic phase behavior and multiphase transport ability in nanoporous material[J]. Chemical Engineering Journal, 2020, 382, doi:10.1016/j.cej.2019.122974.
DOI
|
[7] |
Zhong J J, Alibakhshi M A, Xie Q, et al. Exploring anomalous fluid behavior at the nanoscale: Direct visualization and quantification via nanofluidic devices[J]. Accounts of Chemical Research, 2020, 53(2): 347-357.
DOI
PMID
|
[8] |
Zhong J J, Riordon J, Zandavi S H, et al. Capillary condensation in 8 nm deep channels[J]. The Journal of Physical Chemistry Letters, 2018, 9(3): 497-503.
DOI
URL
|
[9] |
Xie Q, Alibakhshi M A, Jiao S P, et al. Fast water transport in graphene nanofluidic channels[J]. Nature Nanotechnology, 2018, 13: 238-245.
DOI
PMID
|
[10] |
Zhong J J, Talebi S, Xu Y, et al. Fluorescence in sub-10 nm channels with an optical enhancement layer[J]. Lab on a Chip, 2018, 18(4): 568-573.
DOI
PMID
|
[11] |
Bao B, Zandavi S H, Li H W, et al. Bubble nucleation and growth in nanochannels[J]. Physical Chemistry Chemical Physics, 2017, 19(12): 8223-8229.
DOI
PMID
|
[12] |
Zhong J J, Zhao Y N, Lu C, et al. Nanoscale phase measurement for the shale challenge: Multicomponent fluids in multiscale volumes[J]. Langmuir, 2018, 34(34): 9927-9935.
DOI
PMID
|
[13] |
姚军, 黄朝琴, 孙海, 等. 油气渗流力学多尺度研究方法进展[J]. 石油科学通报, 2023, 8(1): 32-68.
|
[14] |
Wang S, Feng Q H, Javadpour F, et al. Multiscale modeling of gas transport in shale matrix: An integrated study of molecular dynamics and rigid-pore-network model[J]. SPE Journal, 2020, 25(3): 1416-1442.
DOI
URL
|
[15] |
Darabi H, Ettehad A, Javadpour F, et al. Gas flow in ultra-tight shale strata[J]. Journal of Fluid Mechanics, 2012, 710: 641-658.
DOI
URL
|
[16] |
孙海, 姚军, Yalchin Efendiev. 基于均匀化理论的页岩基岩运移机制尺度升级研究[J]. 中国科学: 物理学力学天文学, 2017, 47(11): 119-128.
|
[17] |
Fan W P, Sun H, Yao J, et al. An upscaled transport model for shale gas considering multiple mechanisms and heterogeneity based on homogenization theory[J]. Journal of Petroleum Science and Engineering, 2019, 183, doi:10.1016/j.petrol.2019.106392.
DOI
|
[18] |
Yao J, Gao B, Huang Z Q. On the interface boundary conditions for the Stokes-Darcy coupling problem[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2014, 44(2): 212-220.
|
[19] |
Yan X, Huang Z Q, Yao J, et al. Numerical simulation of hydro-mechanical coupling in fractured vuggy porous media using the equivalent continuum model and embedded discrete fracture model[J]. Advances in Water Resources, 2019, 126: 137-154.
DOI
URL
|
[20] |
Lewandowska J, Auriault J L. Extension of Biot theory to the problem of saturated microporous elastic media with isolated cracks or/and vugs[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(16): 2611-2628.
|
[21] |
Zhang N, Yao J, Huang Z Q, et al. Accurate multiscale finite element method for numerical simulation of two-phase flow in fractured media using discrete-fracture model[J]. Journal of Computational Physics, 2013, 242: 420-438.
DOI
URL
|
[22] |
张娜, 姚军, 黄朝琴, 等. 基于离散缝洞网络模型的缝洞型油藏混合多尺度有限元数值模拟[J]. 计算力学学报, 2015, 32(4): 473-478.
|
[23] |
Yang S, Wu K L, Xu J Z, et al. Roles of multicomponent adsorption and geomechanics in the development of an Eagle Ford shale condensate reservoir[J]. Fuel, 2019, 242: 710-718.
DOI
URL
|
[24] |
Yan X A, Huang Z Q, Yao J, et al. An efficient numerical hybrid model for multiphase flow in deformable fractured-shale reservoirs[J]. SPE Journal, 2018, 23(4): 1412-1437.
DOI
URL
|
[25] |
Li S B, Feng X T, Zhang D X, et al. Coupled thermo-hydro-mechanical analysis of stimulation and production for fractured geothermal reservoirs[J]. Applied Energy, 2019, 247: 40-59.
DOI
URL
|
[26] |
Sukirman Y, Lewis R W. A finite element solution of a fully coupled implicit formulation for reservoir simulation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1993, 17(10): 677-698.
DOI
URL
|
[27] |
Tran D, Nghiem L, Settari A. New iterative coupling between a reservoir simulator and a geomechanics module[J]. SPE Journal, 2004, 9(3): 362-369.
DOI
URL
|
[28] |
Forsythe G E, Wasow W R. Finite-difference methods for partial differential equations[J]. Mathematics of Computation, 1962, 5: 229-230.
|
[29] |
Versteeg H K, Malalasekera W. An introduction to computational fluid dynamics: The finite volume method[M]. 2nd ed. Harlow: Pearson Education Ltd., 2007.
|
[30] |
Zienkiewicz O C, Taylor R L, Nithiarasu P, et al. The finite element method[M]. London: McGraw-Hill, 1977.
|
[31] |
Khoei A R. Extended finite element method: Theory and applications[M]. New York: John Wiley & Sons, 2014.
|
[32] |
Cockburn B, Shu C W. TVB runge-kutta local projection discontinuous Galerkin finite element method for conservation laws II: General framework[J]. Mathematics of Computation, 1989, 52(186): 411-435.
|
[33] |
Li K, Dogru A, McDonald A, et al. Improving the performance of MARS reservoir simulator on Cray-2 supercomputer[C]// Proceedings of the Middle East Oil Show. Richardson: SPE, 1995: 185-196.
|
[34] |
Kaarstad T, Froyen J, Bjorstad P, et al. A massively parallel reservoir simulator[C]// Proceedings of the SPE Reservoir Simulation Symposium. Richardson: SPE, 1995: 467-478.
|
[35] |
Dogru A H, Fung L S K, Middya U, et al. A next-generation parallel reservoir simulator for giant reservoirs[C]// Proceedings of the SPE Reservoir Simulation Symposium. Richardson: SPE, 2009: SPE-119272-MS.
|
[36] |
Wang T, Yao J. Load-balanced parallel simulations for embedded discrete fracture model on non-conforming staggered 3D unstructured grids[J]. Journal of Computational Physics, 2022, 459, doi:10.1016/j.jcp.2022.111148.
DOI
|
[37] |
Yu S, Liu H, Chen Z J, et al. GPU-based parallel reservoir simulation for large-scale simulation problems[C]// Proceedings of the SPE Europec/EAGE Annual Conference. Richardson: SPE, 2012: SPE-152271-MS.
|
[38] |
任芳祥. 油藏立体开发探讨[J]. 石油勘探与开发, 2012, 39(3): 320-325.
|
[39] |
Ge L Z, Tong K J, Meng Z Q, et al. Construction of an efficient development mode for buried-hill fractured reservoirs in Bohai Bay[J]. Advances in Geo-Energy Research, 2020, 4(2): 162-172.
DOI
URL
|
[40] |
Wang J, Zhang T Z, Liu H Q, et al. A novel method of constructing spatial well pattern for water flooding in fractured-vuggy carbonate reservoirs FVCRs[C]// Proceedings of the SPE Annual Technical Conference and Exhibition. Richardson: SPE, 2021: SPE-206017-MS.
|
[41] |
刘慧卿. 热力采油原理与设计[M]. 北京: 石油工业出版社, 2013.
|
[42] |
孙焕泉, 刘慧卿, 王海涛, 等. 中国稠油热采开发技术与发展方向[J]. 石油学报, 2022, 43(11): 1664-1674.
DOI
|
[43] |
Wang J H, Tan Y H, Rijken P, et al. Observations and modeling of fiber-optics strain on hydraulic fracture height growth in HFTS-2[C]// Proceedings of the 9th Unconventional Resources Technology Conference. Tulsa: American Association of Petroleum Geologists, 2021: 1514-1532.
|
[44] |
薛亮, 戴城, 韩江峡, 等. 油藏渗流物理和数据联合驱动的深度神经网络模型[J]. 油气地质与采收率, 2022, 29(1): 145-151.
|