Science and Technology Foresight ›› 2023, Vol. 2 ›› Issue (1): 118-131.DOI: 10.3981/j.issn.2097-0781.2023.01.009
• Review and Commentary • Previous Articles Next Articles
YU Zhiwen1(), LI Qingyang1,2, WANG Qianru1,2, GUO Bin1
Received:
2022-12-31
Revised:
2023-01-30
Online:
2023-03-20
Published:
2023-03-27
作者简介:
於志文,教授,博士研究生导师。教育部“长江学者”特聘教授,国家杰出青年科学基金获得者,国家“万人计划”科技创新领军人才。主要研究领域为移动互联网、普适计算、人机系统。电子信箱:zhiwenyu@nwpu.edu.cn。
基金资助:
YU Zhiwen, LI Qingyang, WANG Qianru, GUO Bin. Human-centered Sensing and Computing: Research Progress and Prospects[J]. Science and Technology Foresight, 2023, 2(1): 118-131.
於志文, 李青洋, 王倩茹, 郭斌. 人为中心感知计算研究进展及展望[J]. 前瞻科技, 2023, 2(1): 118-131.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.qianzhankeji.cn/EN/10.3981/j.issn.2097-0781.2023.01.009
[1] |
McGregor S. Preventing repeated real world AI failures by cataloging incidents: The AI incident database[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(17): 15458-15463.
DOI URL |
[2] |
Shneiderman B. Design lessons from AI’s two grand goals: Human emulation and useful applications[J]. IEEE Transactions on Technology and Society, 2020, 1(2): 73-82.
DOI URL |
[3] | Quinn A J, Bederson B B. Human computation: A survey and taxonomy of a growing field[C]// Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York: ACM Press, 2011: 1403-1412. |
[4] | 叶宁, 王汝传. 无线传感器网络数据融合模型研究[J]. 计算机科学, 2006, 33(6): 58-60. |
[5] |
Tseng C M. Operating styles, working time and daily driving distance in relation to a taxi driver’s speeding offenses in Taiwan[J]. Accident Analysis and Prevention, 2013, 52: 1-8.
DOI URL |
[6] |
Greaves S P, Ellison A B. Personality, risk aversion and speeding: An empirical investigation[J]. Accident Analysis and Prevention, 2011, 43(5): 1828-1836.
DOI URL |
[7] | Wang W, Liu A X, Shahzad M. Gait recognition using WiFi signals[C]// Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. New York: ACM Press, 2016: 363-373. |
[8] |
Dang X, Cao Y, Hao Z, et al. WiGId: Indoor group identification with CSI-based random forest[J]. Sensors, 2020, 20(16), doi: 10.3390/s20164607.
DOI |
[9] | Xu W, Yu Z W, Wang Z, et al. AcousticID: Gait-based human identification using acoustic signal[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2019, 3(3): 1-25. |
[10] |
Jiang W W, Luo J Y. Graph neural network for traffic forecasting: A survey[J]. Expert Systems With Applications, 2022, 207, doi: 10.1016/j.eswa.2022.117921.
DOI |
[11] |
Zhang Y, Bocquet M, Mallet V, et al. Real-time air quality forecasting, part I: History, techniques, and current status[J]. Atmospheric Environment, 2012, 60: 632-655.
DOI URL |
[12] |
Graham E A, Lam Y, Yuen E M. Forest understory soil temperatures and heat flux calculated using a Fourier model and scaled using a digital camera[J]. Agricultural and Forest Meteorology, 2010, 150(4): 640-649.
DOI URL |
[13] | Shilton K, Burke J, Estrin D, et al. Designing the personal data stream: Enabling participatory privacy in mobile personal sensing[C/OL]. [2023-01-13]. https://terpconnect.umd.edu/-kshilton/pdf/ShiltonEtAlTPRCpreprint.pdf. |
[14] | Zhang H W, Naik V. Data transport control in wireless sensor networks[M]// Misra S, Woungang I, Misra S. Guide to Wireless Sensor Networks. London: Springer, 2009: 239-259. |
[15] |
Lindgren A, Doria A, Schelén O. Probabilistic routing in intermittently connected networks[J]. ACM SIGMOBILE Mobile Computing and Communications Review, 2003, 7(3): 19-20.
DOI URL |
[16] |
Ye F, Qian Y, Hu R Q. Smart service-aware wireless mixed-area networks[J]. IEEE Network, 2019, 33(1): 84-91.
DOI |
[17] | Wang W, Liu X, Yao Y, et al. CRF: Coexistent routing and flooding using WiFi packets in heterogeneous IoT networks[C]// Proceedings of the IEEE Conference on Computer Communications. Piscataway: IEEE Press, 2019: 19-27. |
[18] | Burke J A, Estrin D, Hansen M, et al. Participatory sensing[C/OL]. [2023-01-13]. https://people.eecs.berkeley.edu/-sylvia/papers/estrin-participatorysens.pdf. |
[19] | 刘云浩. 群智感知计算[J]. 中国计算机学会通讯, 2012, 8(10): 38-41. |
[20] |
Xiao Z, Lim H B, Ponnambalam L. Participatory sensing for smart cities: A case study on transport trip quality measurement[J]. IEEE Transactions on Industrial Informatics, 2017, 13(2): 759-770.
DOI URL |
[21] | Bao X, Choudhury R R. MoVi: Mobile phone based video highlights via collaborative sensing[C]// Proceedings of the 8th International Conference on Mobile Systems, Applications, And Services. New York: ACM Press, 2010: 357-370. |
[22] | Marcus A, Bernstein M S, Badar O, et al. Twitinfo: Aggregating and visualizing microblogs for event exploration[C]// Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York: ACM Press, 2011: 227-236. |
[23] | Chen H H, Guo B, Yu Z W, et al. A generic framework for constraint-driven data selection in mobile crowd photographing[J]. IEEE Internet of Things Journal, 2017, 4(1): 284-296. |
[24] |
Cao L B. Non-IIDness learning in behavioral and social data[J]. The Computer Journal, 2014, 57(9): 1358-1370.
DOI URL |
[25] | Xu J, Wei W, Cao L B. Copula-based high dimensional cross-market dependence modeling[C]// Proceedings of the 2017 IEEE International Conference on Data Science and Advanced Analytics. Piscataway: IEEE Press, 2018: 734-743. |
[26] | Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate[DB/OL]. arXiv preprint: 1409.0473, 2014. |
[27] |
Pan S J, Yang Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359.
DOI URL |
[28] |
Wang L, Geng X, Ma X, et al. Ridesharing car detection by transfer learning[J]. Artificial Intelligence, 2019, 273: 1-18.
DOI |
[29] | Yao H X, Liu Y D, Wei Y, et al. Learning from multiple cities: A meta-learning approach for spatial-temporal prediction[C]// Proceedings of the World Wide Web Conference. New York: ACM Press, 2019: 2181-2191. |
[30] | Luo T, Das S K, Tan H P, et al. Incentive mechanism design for crowdsourcing: An all-pay auction approach[J]. ACM Transactions on Intelligent Systems and Technology, 2016, 7(3): 1-26. |
[31] |
Dimitriou T, Krontiris I. Privacy-respecting auctions and rewarding mechanisms in mobile crowd-sensing applications[J]. Journal of Network and Computer Applications, 2017, 100: 24-34.
DOI URL |
[32] | Yang D, Fang X, Xue G. Truthful incentive mechanisms for k-anonymity location privacy[C]// Proceedings of the 2013 IEEE Conference on Computer Communications. Piscataway: IEEE Press, 2013: 2994-3002. |
[33] | Gao L, Hou F, Huang J W. Providing long-term participation incentive in participatory sensing[C]// Proceedings of the 2015 IEEE Conference on Computer Communications. Piscataway: IEEE Press, 2015: 2803-2811. |
[34] | Feng Z N, Zhu Y M, Zhang Q, et al. TRAC: Truthful auction for location-aware collaborative sensing in mobile crowdsourcing[C]// Proceedings of the 2014 IEEE Conference on Computer Communications. Piscataway: IEEE Press, 2014: 1231-1239. |
[35] |
Dissanayake I, Mehta N, Palvia P, et al. Competition matters! Self-efficacy, effort, and performance in crowdsourcing teams[J]. Information & Management, 2019, 56(8): 103158.
DOI URL |
[36] | Brito J, Vieira V, Duran A. Towards a framework for gamification design on crowdsourcing systems: The G. A.M.E. approach[C]// Proceedings of the 2015 12th International Conference on Information Technology-New Generations. Piscataway: IEEE Press, 2015: 445-450. |
[37] |
Jaimes L G, Vergara-Laurens I J, Raij A. A survey of incentive techniques for mobile crowd sensing[J]. IEEE Internet of Things Journal, 2015, 2(5): 370-380.
DOI URL |
[38] |
Hoc J M. Towards a cognitive approach to human-machine cooperation in dynamic situations[J]. International Journal of Human-computer Studies, 2001, 54(4): 509-540.
DOI URL |
[39] |
Chen H H, Guo B, Yu Z W, et al. Toward real-time and cooperative mobile visual sensing and sharing[C]// Proceedings of the 35th Annual IEEE International Conference on Computer Communications. Piscataway: IEEE Press, 2016, doi: 10.1109/INFOCOM.2016.7524481.
DOI |
[40] | Abad A, Nabi M, Moschitti A. Autonomous crowdsourcing through human-machine collaborative learning[C]// Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2017: 873-876. |
[41] | Biagioni J, Gerlich T, Merrifield T, et al. EasyTracker:Automatic transit tracking, mapping, and arrival time prediction using smartphones[C]// Proceedings of the 9th ACM Conference on Embedded Networked Sensor Systems. New York: ACM Press, 2011: 68-81. |
[42] | Guo B, Ouyang Y, Zhang C, et al. CrowdStory: Fine-grained event storyline generation by fusion of multi-modal crowdsourced data[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2017, 1(3): 1-19. |
[43] | Settles B. Active learning[J]. Synthesis Lectures on Artificial Intelligence and Machine Learning, 2012, 6(1): 1-114. |
[44] | Liu Y Z, Li Z, Zhou C, et al. Generative adversarial active learning for unsupervised outlier detection[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(8): 1517-1528. |
[45] | Yang J, Drake T, Damianou A, et al. Leveraging crowdsourcing data for deep active learning an application: Learning intents in alexa[C]// Proceedings of the 2018 World Wide Web Conference. New York: ACM Press, 2018: 23-32. |
[46] |
Ostheimer J, Chowdhury S, Iqbal S. An alliance of humans and machines for machine learning: Hybrid intelligent systems and their design principles[J]. Technology in Society, 2021, 66, doi: 10.1016/j.techsoc.2021.101647.
DOI |
[47] | Schydlo P, Rakovic M, Jamone L, et al. Anticipation in human-robot cooperation: A recurrent neural network approach for multiple action sequences prediction[C]// Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA). New York:ACM Press, 2018: 1-6. |
[48] |
Cai C J, Reif E, Hegde N, et al. Human-centered tools for coping with imperfect algorithms during medical decision-making[C]// Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. New York: ACM Press, 2019, doi: 10.1145/3290605.3300234.
DOI |
[49] | Li X C, Xie K, Wang X, et al. Online internet anomaly detection with high accuracy: A fast tensor factorization solution[C]// Proceedings of the 2019 IEEE Conference on Computer Communications. Piscataway: IEEE, 2019: 1900-1908. |
[50] |
Li Q Y, Yu Z W, Yao L N, et al. RLTIR: Activity-based interactive person identification via reinforcement learning tree[J]. IEEE Internet of Things Journal, 2022, 9(6): 4464-4475.
DOI URL |
[51] | Nushi B, Kamar E, Horvitz E. Towards accountable AI: Hybrid human-machine analyses for characterizing system failure[C]// Chen Y, Kazai G.Proceedings of the Sixth AAAI Conference on Human Computation and Crowdsourcing. Palo Alto: AAAI Press, 2018: 126-135. |
[52] | Wang Y F, Yu Z W, Yang F, et al. Video pedestrian re-identification based on human-machine collaboration[C]// Sun Y, Liu D, Liao H, et al. Proceedings of the CCF Conference on Computer Supported Cooperative Work and Social Computing. Singapore: Springer, 2021: 410-423. |
[53] |
Yang F, Yu Z W, Chen L M, et al. Human-machine cooperative video anomaly detection[J]. Proceedings of the ACM on Human-Computer Interaction, 2020, 4(CSCW3), doi: 10.1145/3434183.
DOI |
[54] | Dürr F, Skvortsov P, Rothermel K. Position sharing for location privacy in non-trusted systems[C]// Proceedings of the 2011 IEEE International Conference on Pervasive Computing and Communications (PerCom). Piscataway:IEEE Press, 2011: 189-196. |
[55] | Boukoros S, Humbert M, Katzenbeisser S, et al. On (the lack of) location privacy in crowdsourcing applications[DB/OL]. arXiv preprint: 1901.04923, 2019. |
[56] | Krontiris I, Dimitriou T. Privacy-respecting discovery of data providers in crowd-sensing applications[C]// Proceedings of the 2013 IEEE International Conference on Distributed Computing in Sensor Systems. Piscataway: IEEE Press, 2013: 249-257. |
[57] | Dingledine R, Mathewson N, Syverson P. Tor: The second-generation onion router[R]. Washington, D. C.: Naval Research Laboratory, 2004. |
[58] |
Christin D, Roßkopf C, Hollick M, et al. IncogniSense: An anonymity-preserving reputation framework for participatory sensing applications[J]. Pervasive and Mobile Computing, 2013, 9(3): 353-371.
DOI URL |
[59] |
Wu S, Wang X L, Wang S, et al. K-anonymity for crowdsourcing database[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(9): 2207-2221.
DOI URL |
[60] |
Shin M, Cornelius C, Peebles D, et al. AnonySense: A system for anonymous opportunistic sensing[J]. Pervasive and Mobile Computing, 2011, 7(1): 16-30.
DOI URL |
[61] |
Zhang L C, Wang X M, Lu J L, et al. An efficient privacy preserving data aggregation approach for mobile sensing[J]. Security and Communication Networks, 2016, 9(16): 3844-3853.
DOI URL |
[62] | Sahai A, Waters B. Fuzzy identity-based encryption[C]// Proceedings of the 24th Annual International Conference on Theory and Applications of Cryptographic Techniques. New York: ACM Press, 2005: 457-473. |
[63] | Hale M, Egerstedt M. Constrained multi-agent optimization with differentially private states[DB/OL]. ArXiv preprint: 1507.04371, 2015. |
[64] |
Han S, Topcu U, Pappas G J. Differentially private distributed constrained optimization[J]. IEEE Transactions on Automatic Control, 2017, 62(1): 50-64.
DOI URL |
[65] |
Salah K, Rehman M H U, Nizamuddin N, et al. Blockchain for AI: Review and open research challenges[J]. IEEE Access, 2019, 7: 10127-10149.
DOI |
[66] | Konečný J, Mcmahan H B, Yu F X, et al. Federated learning: Strategies for improving communication efficiency[DB/OL]. arXiv preprint: 1610.05492, 2016. |
[67] | Salem A, Zhang Y, Humbert M, et al. ML-leaks: Model and data independent membership inference attacks and defenses on machine learning models[C]// Proceedings of the 2019 Network and Distributed System Security Symposium. Reston: Internet Society, 2019: 24-27. |
[68] |
Beaulieu-Jones B K, Wu Z S, Williams C, et al. Privacy-preserving generative deep neural networks support clinical data sharing[J]. bioRxiv, 2018, doi: 10.1101/159756.
DOI |
[69] | Juuti M, Szyller S, Marchal S, et al. PRADA: Protecting against DNN model stealing attacks[C]// Proceedings of the 2019 IEEE European Symposium on Security and Privacy (Euro S&P). Piscataway:IEEE Press, 2019: 512-527. |
[70] | Bonawitz K, Ivanov V, Kreuter B, et al. Practical secure aggregation for privacy-preserving machine learning[C]// Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM Press, 2017: 1175-1191. |
[71] | Wei K, Li J, Ding M, et al. Federated learning with differential privacy: Algorithms and performance analysis[J]. IEEE Transactions on Information Forensics and Security. Piscataway: IEEE Press, 2020: 3454-3469. |
[72] | Li Z, Hubchak M, Zhu Y. Deep leakage from gradients in multiple-label medical image classification[C]// Proceedings of the 2021 IEEE 9th International Conference on Healthcare Informatics (ICHI). Piscataway:IEEE Press, 2021: 447-448. |
[73] |
Geng X, Li Y G, Wang L Y, et al. Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 3656-3663.
DOI URL |
[74] |
Huang W H, Song G J, Hong H K, et al. Deep architecture for traffic flow prediction: Deep belief networks with multitask learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(5): 2191-2201.
DOI URL |
[75] | Ye J C, Sun L L, Du B W, et al. Co-prediction of multiple transportation demands based on deep spatio-temporal neural network[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM Press, 2019: 305-313. |
[76] | Yu B, Yin H T, Zhu Z X. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting[C]// Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2018: 3634-3640. |
[77] | Uddin M Y S, Wang H Y, Saremi F, et al. PhotoNet: A similarity-aware picture delivery service for situation awareness[C]// Proceedings of the 2011 IEEE 32nd Real-time Systems Symposium. Piscataway: IEEE Press, 2012: 317-326. |
[78] | Wu Y B, Wang Y, Hu W J, et al. Resource-aware photo crowdsourcing through disruption tolerant networks[C]// 2016 IEEE 36th International Conference on Distributed Computing Systems (ICDCS). Piscataway:IEEE Press, 2016: 374-383. |
[79] | van Leuken R H, Garcia L, Olivares X, et al. Visual diversification of image search results[C]// Proceedings of the 18th International Conference on World Wide Web. New York: ACM Press, 2009: 341-350. |
[80] | Zheng Y Q, Shen G B, Li L Q, et al. Travi-navi: Self-deployable indoor navigation system[J]. ACM Transactions on Networking, 2017, 25(5): 2655-2669. |
[81] | Koutsopoulos I. Optimal incentive-driven design of participatory sensing systems[C]// Proceedings of the 2013 IEEE Conference on Computer Communications. Piscataway: IEEE Press, 2013: 1402-1410. |
[82] | Sutton R S. Generalization in reinforcement learning: Successful examples using sparse coarse coding[C]// Advances in Neural Information Processing Systems 8, NIPS. Cambridge: MIT Press, 1995: 1038-1044. |
[83] | Mnih V, Kavukcuoglu K, Silver D, et al. Playing atari with deep reinforcement learning[DB/OL]. arXiv preprint: 1312.5602, 2013. |
[84] | Silver D, Lever G, Heess N, et al. Deterministic policy gradient algorithms[C]// Proceedings of the 31st International Conference on Machine Learning, PMLR. New York: ACM Press, 2014, 32(1): 387-395. |
[85] |
Barto A G, Sutton R S, Anderson C W. Neuronlike adaptive elements that can solve difficult learning control problems[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1983, SMC-13(5): 834-846.
DOI URL |
[86] | Mallya A, Davis D, Lazebnik S. Piggyback: Adapting a single network to multiple tasks by learning to mask weights[C]// Proceedings of the 15th European Conference on Computer Vision, ECCV 2018. New York: ACM Press, 2018: 72-88. |
[87] | Fernando C, Banarse D, Blundell C, et al. PathNet: Evolution channels gradient descent in super neural networks[DB/OL]. arXiv preprint: 1701.08734, 2017. |
[88] | Xu J, Zhu Z X. Reinforced continual learning[DB/OL]. arXiv preprint: 1805. 12369, 2018. |
[89] |
Park G M, Yoo S M, Kim J H. Convolutional neural network with developmental memory for continual learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(6): 2691-2705.
DOI URL |
[90] | Huang K L, Kanhere S S, Hu W. Are you contributing trustworthy data? The case for a reputation system in participatory sensing[C]// Proceedings of the 13th ACM International Conference on Modeling, Analysis, and Simulation of Wireless and Mobile Systems. New York: ACM Press, 2010: 14-22. |
[91] | Kang J W, Xiong Z H, Niyato D, et al. Reliable federated learning for mobile networks[J]. IEEE Wireless Communications, 2020, 27(2): 72-80. |
[92] | Miao C L, Jiang W J, Su L, et al. Cloud-enabled privacy-preserving truth discovery in crowd sensing systems[C]// Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems. New York: ACM Press, 2015: 183-196. |
[93] | Meng C S, Jiang W J, Li Y L, et al. Truth discovery on crowd sensing of correlated entities[C]// Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems. New York: ACM Press, 2015: 169-182. |
[94] |
Lee J D, See K A. Trust in automation: Designing for appropriate reliance[J]. Human Factors, 2004, 46(1): 50-80.
DOI PMID |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京公网安备 11010802038735号