Science and Technology Foresight ›› 2022, Vol. 1 ›› Issue (3): 130-145.DOI: 10.3981/j.issn.2097-0781.2022.03.011
• Review and Commentary • Previous Articles Next Articles
WANG Peijian1,2(), ZHOU Jiachao1,2, HU Jiayang1,2, LI Hanxi1,2, TIAN Feng1,2, ZHANG Zhixiang1,2, CHAI Jian1,2, XU Xinyi1,2, BIAN Zheng1,2, ZHAO Yuda1,2, XU Yang1,2, YU Bin1,2,†(
)
Received:
2022-08-10
Revised:
2022-08-20
Online:
2022-09-20
Published:
2022-11-04
Contact:
YU Bin
王佩剑1,2(), 周嘉超1,2, 胡加杨1,2, 李涵茜1,2, 田丰1,2, 张致翔1,2, 柴健1,2, 徐心艺1,2, 卞正1,2, 赵昱达1,2, 徐杨1,2, 俞滨1,2,†(
)
通讯作者:
俞滨
作者简介:
王佩剑,研究员,博士研究生导师。浙江大学杭州国际科创中心“求是科创学者”,杭州市级领军人才。研究方向为低维材料生长制备、物性表征/调控、集成与器件应用。近3年来在Nature Communications、ACS Nano、Nano Letters、Applied Physics Reviews、Advanced Materials、Chemical Science等期刊发表论文17篇,研究团队发表论文40余篇。主持国家自然科学基金青年科学基金1项。受邀为Journal of Magnetism and Magnetic Materials、Nanoscale、Journal of Physical Chemistry C等期刊审稿。获美国物理学会会议“Best Poster Award”奖和UMass专业发展旅行奖等。获授权发明专利3项。电子信箱: pjwang@zju.edu.cn。基金资助:
WANG Peijian, ZHOU Jiachao, HU Jiayang, LI Hanxi, TIAN Feng, ZHANG Zhixiang, CHAI Jian, XU Xinyi, BIAN Zheng, ZHAO Yuda, XU Yang, YU Bin. Device Technology in Post-Moore Era: Research Progress and Future Trends[J]. Science and Technology Foresight, 2022, 1(3): 130-145.
王佩剑, 周嘉超, 胡加杨, 李涵茜, 田丰, 张致翔, 柴健, 徐心艺, 卞正, 赵昱达, 徐杨, 俞滨. 后摩尔器件发展现状与未来趋势[J]. 前瞻科技, 2022, 1(3): 130-145.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.qianzhankeji.cn/EN/10.3981/j.issn.2097-0781.2022.03.011
[1] |
Liu Y, Duan X D, Shin H J, et al. Promises and prospects of two-dimensional transistors[J]. Nature, 2021, 591(7848): 43-53.
DOI URL |
[2] |
Abraham M, Mohney S E. Annealed Ag contacts to MoS2 field-effect transistors[J]. Journal of Applied Physics, 2017, doi: 10.1063/1.4991961.
DOI |
[3] |
Hung T Y, Wang S Y, Chuu C P, et al. Pinning-free edge contact monolayer MoS2 FET[C]// 2020 IEEE International Electron Devices Meeting (IEDM). Piscataway: IEEE Press, 2020, doi: 10.1109/IEDM13553.2020.9372028.
DOI |
[4] |
Zhang S, Le S T, Richter C A, et al. Improved contacts to p-type MoS2 transistors by charge-transfer doping and contact engineering[J]. Applied Physics Letters, 2019, doi: 10.1063/1.5100154.
DOI |
[5] | Jang J, Kim Y, Chee S S, et al. Clean interface contact using a ZnO interlayer for low-contact-resistance MoS2 transistors[J]. ACS Applied Materials & Interfaces, 2019, 12(4): 5031-5039. |
[6] |
Liu L, Kong L, Li Q, et al. Transferred van der Waals metal electrodes for sub-1-nm MoS2 vertical transistors[J]. Nature Electronics, 2021, 4(5): 342-347.
DOI URL |
[7] |
Xiong X, Tong A, Wang X, et al. Demonstration of vertically-stacked CVD monolayer channels:MoS2 nano-sheets GAA-FET with I on> 700 µA/µm and MoS2/WSe2 CFET[C]// 2021 IEEE International Electron Devices Meeting (IEDM). Piscataway: IEEE Press, 2021, doi: 10.1109/IEDM19574.2021.9720533.
DOI |
[8] |
Li S L, Tsukagoshi K, Orgiu E, et al. Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors[J]. Chemical Society Reviews, 2016, 45(1): 118-151.
DOI URL |
[9] |
Kong L, Zhang X, Tao Q, et al. Doping-free complementary WSe2 circuit via van der Waals metal integration[J]. Nature Communications, 2020, 11(1): 1-7.
DOI URL |
[10] |
Ji H G, Solís‐Fernández P, Yoshimura D, et al. Chemically tuned p- and n-type WSe2 monolayers with high carrier mobility for advanced electronics[J]. Advanced Materials, 2019, doi: 10.1002/adma.201903613.
DOI |
[11] |
Ghosh S, Varghese A, Thakar K, et al. Enhanced responsivity and detectivity of fast WSe2 phototransistor using electrostatically tunable in-plane lateral pn homojunction[J]. Nature Communications, 2021, 12(1): 1-9.
DOI URL |
[12] |
Zhou C, Zhao Y, Raju S, et al. Carrier type control of WSe2 field-effect transistors by thickness modulation and MoO3 layer doping[J]. Advanced Functional Materials, 2016, 26(23): 4223-4230.
DOI URL |
[13] |
Sohier T, Yu B. Ultralow-voltage design of graphene PN junction quantum reflective switch transistor[J]. Applied Physics Letters, 2011, doi: 10.1063/1.3593956.
DOI |
[14] |
Sarkar D, Xie X, Liu W, et al. A subthermionic tunnel field-effect transistor with an atomically thin channel[J]. Nature, 2015, 526(7571): 91-95.
DOI URL |
[15] |
Tang Z, Liu C, Huang X, et al. A steep-slope MoS2/graphene dirac-source field-effect transistor with a large drive current[J]. Nano Letters, 2021, 21(4): 1758-1764.
DOI URL |
[16] |
Wang H, Yang M, Huang Q, et al. New insights into the physical origin of negative capacitance and hysteresis in NCFETs[C]// 2018 IEEE International Electron Devices Meeting (IEDM). Piscataway: IEEE Press, 2018, doi: 10.1109/IEDM.2018.8614504.
DOI |
[17] |
Hua Q, Gao G, Jiang C, et al. Atomic threshold-switching enabled MoS2 transistors towards ultralow-power electronics[J]. Nature Communications, 2020, 11(1): 1-10.
DOI URL |
[18] |
Wu H, Cui Y H, Xu J L, et al. Multifunctional half-floating-gate field-effect transistor based on MoS2-BN-graphene van der Waals heterostructures[J]. Nano Letters, 2022, 22(6): 2328-2333.
DOI URL |
[19] |
Migliato M G, Zhao Y, Avsar A, et al. Logic-in-memory based on an atomically thin semiconductor[J]. Nature, 2020, 587(7832): 72-77.
DOI URL |
[20] |
Pan C, Wang C Y, Liang S J, et al. Reconfigurable logic and neuromorphic circuits based on electrically tunable two-dimensional homojunctions[J]. Nature Electronics, 2020, 3(7): 383-390.
DOI URL |
[21] |
Lee S, Peng R, Wu C, et al. Programmable black phosphorus image sensor for broadband optoelectronic edge computing[J]. Nature Communications, 2022, doi: 10.1038/s41467-022-29171-1.
DOI |
[22] |
Wan X, Xu Y, Guo H, et al. A self-powered high-performance graphene/silicon ultraviolet photodetector with ultra-shallow junction: breaking the limit of silicon?[J]. npj 2D Materials and Applications, 2017, 1(1): 1-8.
DOI URL |
[23] |
Tan C, Amani M, Zhao C, et al. Evaporated SexTe1-x thin films with tunable bandgaps for short-wave infrared photo detectors[J]. Advanced Materials, 2020, doi: 10.1002/adma.202001329.
DOI |
[24] |
Liu W, Lv J, Peng L, et al. Graphene charge-injection photodetectors[J]. Nature Electronics, 2022, 5(5): 281-288.
DOI URL |
[25] |
Goossens S, Navickaite G, Monasterio C, et al. Broadband image sensor array based on graphene-CMOS integration[J]. Nature Photonics, 2017, 11(6): 366-371.
DOI URL |
[26] |
Likamwa R, Hou Y, Gao J, et al. Redeye: Analog convnet image sensor architecture for continuous mobile vision[J]. ACM SIGARCH Computer Architecture News, 2016, 44(3): 255-266.
DOI URL |
[27] | Bong K, Choi S, Kim C, et al. 14.6 A 0.62 mW ultra-low-power convolutional-neural network face-recognition processor and a CIS integrated with always-on haar-like face detector[C]// IEEE International Solid-State Circuits Conference. Piscataway: IEEE Press, 2017: 248-249. |
[28] |
Wang Z, Li C, Lin P, et al. In situ training of feed-forward and recurrent convolutional memristor networks[J]. Nature Machine Intelligence, 2019, 1(9): 434-442.
DOI URL |
[29] |
Zhang X, Grajal J, Vazquez-Roy J L, et al. Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting[J]. Nature, 2019, 566(7744): 368-372.
DOI URL |
[30] |
Mennel L, Symonowicz J, Wachter S, et al. Ultrafast machine vision with 2D material neural network image sensors[J]. Nature, 2020, 579(7797): 62-66.
DOI URL |
[31] |
Pi L, Wang P, Liang S-J, et al. Broadband convolutional processing using band-alignment-tunable heterostructures[J]. Nature Electronics, 2022, 5(4): 248-254.
DOI URL |
[32] |
Mead C. Neuromorphic Electronic Systems[J]. Proceedings of the IEEE, 1990, 78(10): 1629-1636.
DOI URL |
[33] |
Gu L, Poddar S, Lin Y, et al. A biomimetic eye with a hemispherical perovskite nanowire array retina[J]. Nature, 2020, 581(7808): 278-282.
DOI URL |
[34] |
Pei J, Deng L, Song S, et al. Towards artificial general intelligence with hybrid Tianjic chip architecture[J]. Nature, 2019, 572(7767): 106-111.
DOI URL |
[35] |
Chua L. Memristor-the missing circuit element[J]. IEEE Transactions on Circuit Theory, 1971, 18(5): 507-519.
DOI URL |
[36] |
Chua L O, Kang S M. Memristive devices and systems[J]. Proceedings of the IEEE, 1976, 64(2): 209-223.
DOI URL |
[37] |
Strukov D B, Snider G S, Stewart D R, et al. The missing memristor found[J]. Nature, 2008, 453(7191): 80-83.
DOI URL |
[38] |
Marrone F, Secco J, Kersting B, et al. Experimental validation of state equations and dynamic route maps for phase change memristive devices[J]. Scientific Reports, 2022, doi: 10.1038/s41598-022-09948-6.
DOI |
[39] |
Sheridan P M, Cai F, Du C, et al. Sparse coding with memristor networks[J]. Nature Nanotechnology, 2017, 12(8): 784-789.
DOI PMID |
[40] |
Tang K, Wang Y, Gong C, et al. Electronic and photoelectronic memristors based on 2D materials[J]. Advanced Electronic Materials, 2022, doi: 10.1002/aelm.202101099.
DOI |
[41] |
Hus S M, Ge R, Chen P A, et al. Observation of single-defect memristor in an MoS2 atomic sheet[J]. Nature Nanotechnology, 2021, 16(1): 58-62.
DOI URL |
[42] |
Novoselov K, Mishchenko O A, Carvalho O A, et al. 2D materials and van der Waals heterostructures[J]. Science, 2016, doi: 10.1126/science.aac9439.
DOI |
[43] |
Im I H, Kim S J, Jang H W. Memristive devices for new computing paradigms[J]. Advanced Intelligent Systems, 2020, doi: 10.1002/aisy.202000105.
DOI |
[44] |
Zhao X, Ma J, Xiao X, et al. Breaking the current-retention dilemma in cation-based resistive switching devices utilizing graphene with controlled defects[J]. Advanced Materials, 2018, doi: 10.1002/adma.201705193.
DOI |
[45] |
Chi P, Li S, Xu C, et al. PRIME: A novel processing-in-memory architecture for neural network computation in ReRAM-based main memory[C]// 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture ( ISCA). Piscataway: IEEE Press, doi: 10.1109/ISCA.2016.13.
DOI |
[46] |
Kim K H, Gaba S, Wheeler D, et al. A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications[J]. Nano Letters, 2012, 12(1): 389-395.
DOI URL |
[47] | Oconnor P, Welling M. Deep spiking networks[J]. arXiv e-prints, 2016, arXiv: 1602.08323. |
[48] |
Zhu X, Wang Q, Lu W D. Memristor networks for real-time neural activity analysis[J]. Nature Communications, 2020, doi: 10.1038/s41467-020-16261-1.
DOI |
[49] |
Seo S, Jo S H, Kim S, et al. Artificial optic-neural synapse for colored and color-mixed pattern recognition[J]. Nature Communications, 2018, doi: 10.1038/s41467-018-07572-5.
DOI |
[50] |
Kim S, Du C, Sheridan P, et al. Experimental demonstration of a second-order memristor and its ability to biorealistically implement synaptic plasticity[J]. Nano Letters, 2015, 15(3): 2203-2211.
DOI PMID |
[51] |
Merolla P A, Arthur J V, Alvarez-Icaza R, et al. A million spiking-neuron integrated circuit with a scalable communication network and interface[J]. Science, 2014, 345(6197): 668-673.
DOI PMID |
[52] |
He C, Zhu L P, Zhao Q Y, et al. Competition between free carriers and excitons mediated by defects observed in layered WSe2 crystal with time-resolved terahertz spectroscopy[J]. Advanced Optical Materials, 2018, doi: 10.1002/adom.201800290.
DOI |
[53] |
Hao S, Ji X, Zhong S, et al. A monolayer leaky integrate-and-fire neuron for 2D memristive neuromorphic networks[J]. Advanced Electronic Materials, 2020, 6(4), doi: 10.1002/aelm.201901335.
DOI |
[54] |
Duan Q, Jing Z, Zou X, et al. Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks[J]. Nature Communications, 2020, doi: 10.1038/s41467-020-17215-3.
DOI |
[55] | Bao L, Zhu J, Yu Z, et al. Dual-gated MoS2 neuristor for neuromorphic computing[J]. ACS Applied Materials & Interfaces, 2019, 11(44): 41482-41489. |
[56] |
Cao R, Zhang X, Liu S, et al. Compact artificial neuron based on anti-ferroelectric transistor[J]. Reprint, 2021, doi: 10.21203/rs.3.rs-927008/v1.
DOI |
[57] |
Abbott L F, Regehr W G. Synaptic computation[J]. Nature, 2004, 431(7010): 796-803.
DOI URL |
[58] |
Sun L, Zhang Y, Hwang G, et al. Synaptic computation enabled by Joule heating of single-layered semiconductors for sound localization[J]. Nano Letters, 2018, 18(5): 3229-3234.
DOI PMID |
[59] |
Tuma T, Pantazi A, Le Gallo M, et al. Stochastic phase-change neurons[J]. Nature Nanotechnology, 2016, 11(8): 693-699.
DOI PMID |
[60] |
Zhu X, Li D, Liang X, et al. Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing[J]. Nature Materials, 2019, 18(2): 141-148.
DOI URL |
[61] | Bao L, Zhu J, Yu Z, et al. Dual-gated MoS2neuristor for neuromorphic computing[J]. ACS Applied Materials & Interfaces, 2019, 11(44): 41482-41489. |
[62] | Kim S H, Yi S-G, Park M U, et al. Multilevel MoS2 optical memory with photoresponsive top floating gates[J]. ACS Applied Materials & Interfaces, 2019, 11(28): 25306-25312. |
[63] |
Xu R, Jang H, Lee M-H, et al. Vertical MoS2 double-layer memristor with electrochemical metallization as an atomic-scale synapse with switching thresholds ap-proaching 100 mV[J]. Nano Letters, 2019, 19(4): 2411-2417.
DOI URL |
[64] |
Seo S, Jo S H, Kim S, et al. Artificial optic-neural synapse for colored and color-mixed pattern recognition[J]. Nature Communications, 2018, doi: 10.1038/s41467-018-07572-5.
DOI |
[65] |
Baek E, Das N R, Cannistraci C V, et al. Intrinsic plasticity of silicon nanowire neurotransistors for dynamic memory and learning functions[J]. Nature Electronics, 2020, 3(7): 398-408.
DOI URL |
[66] |
Wei H H, Yu H Y, Gong J D, et al. Redox MXene artificial synapse with bidirectional plasticity and hypersensitive responsibility[J]. Advanced Functional Materials, 2021, doi: 10.1002/adfm.202007232.
DOI |
[67] |
Li X Y, Tang J S, Zhang Q T, et al. Power-efficient neural network with artificial dendrites[J]. Nature Nanotechnology, 2020, 15(9): 776-782.
DOI PMID |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京公网安备 11010802038735号