Science and Technology Foresight ›› 2022, Vol. 1 ›› Issue (1): 62-74.DOI: 10.3981/j.issn.2097-0781.2022.01.006
• Review and Commentary • Previous Articles Next Articles
SONG Zhengyu1(), HUANG Bing2, WANG Xiaowei1, ZHANG Hongjian2, WANG Cong3, ZHUANG Fangfang1
Received:
2022-02-07
Revised:
2022-03-04
Online:
2022-03-20
Published:
2022-04-21
宋征宇1(), 黄兵2, 汪小卫1, 张宏剑2, 王聪3, 庄方方1
作者简介:
宋征宇,研究员,博士研究生导师,国际宇航科学院院士。长征八号运载火箭总设计师。国家“万人计划”科技创新领军人才,浙江大学、南京航空航天大学兼职教授,国际宇航联合会载人飞行委员会委员。长期从事航天控制基础理论研究和新型运载火箭的研制,主要研究方向为新一代中型运载火箭和重复使用航天运载器技术。获国家科学技术进步奖特等奖1项、一等奖2项,全国创新争先奖状。电子信箱: zycalt12@sina.com。
基金资助:
SONG Zhengyu, HUANG Bing, WANG Xiaowei, ZHANG Hongjian, WANG Cong, ZHUANG Fangfang. Development and Key Technologies of Reusable Launch Vehicle[J]. Science and Technology Foresight, 2022, 1(1): 62-74.
宋征宇, 黄兵, 汪小卫, 张宏剑, 王聪, 庄方方. 重复使用航天运载器的发展及其关键技术[J]. 前瞻科技, 2022, 1(1): 62-74.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.qianzhankeji.cn/EN/10.3981/j.issn.2097-0781.2022.01.006
动力系统类型 | 组合密度/ (g·cm-3) | 理论比冲/ (m·s-1) | 理论密度比冲/ [103kg·(m2·s)-1] | 燃料冷却性能 | 重复使用性能 |
---|---|---|---|---|---|
液氧煤油发动机 | 1.037 | 3367 | 3492 | 较好,但易积碳 | 较好,但需要清洗 |
液氧甲烷发动机 | 0.823 | 3481 | 2865 | 好,不易积碳 | 好 |
动力系统类型 | 组合密度/ (g·cm-3) | 理论比冲/ (m·s-1) | 理论密度比冲/ [103kg·(m2·s)-1] | 燃料冷却性能 | 重复使用性能 |
---|---|---|---|---|---|
液氧煤油发动机 | 1.037 | 3367 | 3492 | 较好,但易积碳 | 较好,但需要清洗 |
液氧甲烷发动机 | 0.823 | 3481 | 2865 | 好,不易积碳 | 好 |
[1] | Bao W M, Wang X W. Develop highly reliable and low-cost technology of access to space, embrace new space economy era[J]. Aerospace China, 2019, 20(4):23-30. |
[2] | 王小军. 中国航天运输系统未来发展展望[J]. 导弹与航天运载技术, 2021(1):1-6. |
[3] | Lu Y, Giuseppe R, Wang X W, et al. Strategy of large-scale and low-cost access to space in the future[M]. Beijing: International Academy of Astronautics Press, 2020. |
[4] | Swan A P, Raitt I D, Swan W C. Space elevators: An assessment of the technological feasibility and the way forward[M]. Beijing: International Academy of Astronautics Press, 2013. |
[5] | Scott W D, Curreri A P, Ferguson K C, et al. Germinating the 2050 cis-lunar econosphere[R]. Washington, D. C.: NASA, 2015. |
[6] | Bennett T, Cain C, Campbell N. Engineering the cis-lunar economic system based on ULA’s cis-lunar-1000 vision[C]// AIAA SPACE 2016.Reston: AIAA, 2016: AIAA 2016-5305. |
[7] | Sampson M. The next frontier: Transportation for the cislunar marketplace[C]// 68th International Astronautical Congres (IAC). Paris: IAF, 2017: 37308. |
[8] |
Angelopoulos V. The ARTEMIS mission[J]. Space Science Reviews, 2011, 165:3-25.
DOI URL |
[9] | Hellman B M, Bradford J E, ST Germain B D, et al. Two stage to orbit conceptual vehicle designs using the SABRE engine[C]// AIAA SPACE 2016. Reston: AIAA, 2016: AIAA 2016-5320. |
[10] | Wang X W, Wu S B, Gao Z H, et al. Recovery technology of launch vehicle stage[C]/ /67th International Astronautical Congress (IAC). Paris: IAF, 2016: 33361. |
[11] | 马野, 许健, 邵秋虎. 后航天飞机时代天地往返运载器发展趋势研究[J]. 中国航天, 2015(3):17-22. |
[12] | 于霞, 孙伶俐, 单文杰. 国外可重复使用运载器发展现状和趋势[J]. 国际太空, 2012(12):2-6. |
[13] | Bonhomme C, Iannetti A, Girard N, et al. Prometheus: European next generation liquid rocket engine[C]// 68th International Astronautical Congress. Paris: IAF, 2017: 40533. |
[14] | Richardson M P, Hardy W F. Economic benefits of reusable launch vehicles for space debris removal[C]// 68th International Astronautical Congress. Paris: IAF, 2017: 36896. |
[15] | Andrews J E, Wolfert M, Lund E, et al. Comparison of vertical and horizontal take off hybrid launch systems to address responsive space needs[C]// Space 2005. Reston: AIAA, 2005: AIAA 2005-6683. |
[16] | Crocker A M, Cannon J H, Andrews D G. A comparison of horizontal takeoff RLVs for next generation space transportation[C]// 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibi. Reston: AIAA, 2003: AIAA 2003-5037. |
[17] | 鲁宇, 汪小卫, 高朝辉, 等. 重复使用运载火箭技术进展与展望[J]. 导弹与航天运载技术, 2017(5):1-7. |
[18] | 张蒙正, 张玫. 航天运载器重复使用液体动力若干问题探讨[J]. 火箭推进, 2019, 45(4):9-15. |
[19] | Li B, Zhang R W, Zhang M, et al. A review of throttling technology development for large-thrust liquid rocket engines[J]. Aerospace China, 2021, 22(2):14-24. |
[20] | 宋征宇, 蔡巧言, 韩鹏鑫, 等. 重复使用运载器制导与控制技术综述[J]. 航空学报, 2021, 42(11):37-65. |
[21] | 赵海斌, 潘豪, 王聪, 等. 运载火箭垂直回收着陆段制导导航与控制技术研究[J]. 导弹与航天运载技术, 2021, 378(1):76-81. |
[22] |
Song Z, Wang C. Powered soft landing guidance method for launchers with non-cluster configured engines[J]. Acta Astronautica, 2021, 189:379-390.
DOI URL |
[23] | Wang C, Song Z, Shi G, et al. Trajectory planning for landing phase of reusable rocket with high thrust-to-weight ratio[C]// International Conference on Guidance, Navigation and Control. 2020. |
[24] | 杜涛, 许晨舟, 王国辉, 等. 人工智能气动特性预测技术在火箭子级落区控制项目的应用[J]. 宇航学报, 2021, 42(1):61-73. |
[25] | 王辰, 张希, 闫伟, 等. 一种组合可调式栅格舵展开锁定机构: CN111086656A[P]. 2020-05-01. |
[26] | Wang X W, Wang T S, Dong X L. Aerial recovery technology of launch vehicle[C]// 71st International Astronautical Congress (IAC)-The CyberSpace Edition. Paris: IAF, 2020: 55350. |
[27] |
Wei C Z, Ju X Z, Wu R, et al. Geometry and time updaters-based arbitrary-yaw iterative explicit guidance for fixed-thrust boost back of vertical take-off/vertical landing reusable launch vehicles[J]. Aerospace Science and Technology, 2019, 95:105433.
DOI URL |
[28] | 王小虎, 陈翰馥, 刘锋. 机动再入飞行器主动段再入点约束闭路制导研究[J]. 宇航学报, 2002, 23(4):37-41. |
[29] | 韦常柱, 琚啸哲, 徐大富, 等. 垂直起降重复使用运载器返回制导与控制[J]. 航空学报, 2019, 40(7):322782. |
[30] | 崔乃刚, 吴荣, 韦常柱, 等. 垂直起降可重复使用运载器发展现状与关键技术分析[J]. 宇航总体技术, 2018, 2(2):27-42. |
[31] |
Lu P. Propellant-optimal powered descent guidance[J]. Journal of Guidance, Control, and Dynamics, 2017, 41(4):813-826.
DOI URL |
[32] | 蔡洪, 胡正东, 曹渊, 等. 具有终端角度约束的导引律综述[J]. 宇航学报, 2010, 31(2):315-323. |
[33] |
Acikmese B, Ploen S R. Convex programming approach to powered descent guidance for Mars landing[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(5):1353-1366.
DOI URL |
[34] | Szmuk M, Reynolds T, Acikmese B, et al. Successive convexification for 6-DoF powered descent guidance with compound state-triggered constraints[C]// AIAA Scitech 2019 Forum. Reston: AIAA, 2019: AIAA 2019-0926. |
[35] |
Ma L, Wang K X, Xu Z H, et al. Trajectory optimization for lunar rover performing vertical takeoff vertical landing maneuvers in the presence of terrain[J]. Acta Astronautica, 2018, 146:289-299.
DOI URL |
[36] |
Xing G Q, Parvez S A. Nonlinear attitude state tracking control for spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(3):624-626.
DOI URL |
[37] | Shtessel Y, Hall C, Baev S, et al. Flexible modes control using sliding mode observers: Application to Ares I[C]// AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2010: AIAA 2010-7565. |
[38] | Pei J, Puetz A, Duarte C, et al. Suppression of nonlinear rotary slosh dynamics using the SLS adaptive augmenting control system demonstration on a quadcopter testbed[C]// AIAA Scitech 2019 Forum. Reston: AIAA, 2019: AIAA 2019-0114. |
[39] |
Hall C E, Shtessel Y B. Sliding mode disturbance observer-based control for a reusable launch vehicle[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(6):1315-1328.
DOI URL |
[40] |
Wang F, Hua C C, Zong Q. Attitude control of reusable launch vehicle in reentry phase with input constraint via robust adaptive backstepping control[J]. International Journal of Adaptive Control and Signal Processing, 2015, 29(10):1308-1327.
DOI URL |
[41] | 刘超逸, 唐硕, 许志. 可重复使用运载器复合控制研究[J]. 计算机仿真, 2013, 30(10):76-80. |
[42] | Huang Y, Xu K K, Han J Q, et al. Flight control design using extended state observer and non-smooth feedback[C]//Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228). Piscataway: IEEE Press, 2001: 223-228. |
[43] | 张志冰, 甄子洋, 江驹, 等. 舰载机自动着舰引导与控制综述[J]. 南京航空航天大学学报, 2018, 50(6):734-744. |
[44] | 王辰, 袁文全, 郭岳, 等. 重复使用火箭栅格舵传动机构动态特性实验研究[J]. 北京大学学报(自然科学版), 2018, 54(6):1137-1146. |
[45] | Hughson M C, Blades E L, Abate G L. Transonic aerodynamic analysis of lattice grid tail fin missiles[C]// 24th AIAA Applied Aerodynamic Conference. Reston: AIAA, 2006: AIAA 2006-3651. |
[46] | Krishnamurthy R, Shende N V, Narayanarao B. CFD simulation of the grid fin flows[C]// 31st AIAA Applied Aerodynamics Conference. Reston: AIAA, 2013: AIAA 2013-3023. |
[47] | DeSpirito J, Edge H L, Weinacht P, et al. CFD analysis of grid fins for maneuvering missiles[C]// 38th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2000: AIAA 2000-391. |
[48] | Pruzan D A, Mendenhall M R, Rose W C, et al. Grid fin stabilization of the orion launch abort vehicle[C]// 29th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2011: AIAA 2011-3018. |
[49] | Wang D, Yu Y. Numerical study on drag reduction for sweptback, sweptfront, delta grid fin with blunt and sharp leading edges[C]// AIAA Modeling and Simulation Technologies Conference. Reston: AIAA, 2014: AIAA 2014-0638. |
[50] | Guyot D, Schülein E. Novel locally swept lattice wings for missile control at high speeds[C]// 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007: AIAA 2017-63. |
[51] | 王英超, 高海波, 于海涛, 等. 垂直降落运载器着陆动力学建模与稳定性分析[J]. 机械工程学报, 2020, 56(11):37-47. |
[52] |
袁晗, 王小军, 张宏剑, 等. 重复使用火箭着陆结构稳定性分析[J]. 力学学报, 2020, 52(4):1007-1023.
DOI |
[53] | 田保林, 于海涛, 高海波, 等. 一种垂直起降运载器支腿构型设计与尺度优化[J]. 机械工程学报, 2021, 57(15):33-44. |
[54] | 岳帅, 林轻, 杜忠华, 等. 运载器着陆装置展开动力学及影响因素分析[J]. 宇航学报, 2021, 42(6):697-709. |
[55] |
Yue S, Nie H, Zhang M, et al. Optimization and performance analysis of oleo-honeycomb damper used in vertical landing reusable launch vehicle[J]. Journal of Aerospace Engineering, 2018, 31(2):04018002.
DOI URL |
[56] | 田保林, 高海波, 于海涛, 等. 一种垂直起降运载器着陆支腿设计与展开控制[J]. 机械工程学报, 2020, 56(19):171-181. |
[57] | 肖杰, 张明, 岳帅, 等. 新型垂直起降运载器着陆支架收放系统设计与分析[J]. 机械设计与制造工程, 2017, 46(3):30-35. |
[58] | 吴晗玲, 宋保永, 苏晗, 等. 猎鹰9运载火箭结构分系统设计特点分析与研究[J]. 飞航导弹, 2017(9):1-4. |
[59] | Moore M B. A multipurpose satellite ejection system[C]// The 21st Aerospace Mechanisms Symposium. Washington, D. C.: NASA, 1987: 19870020441. |
[60] | 杜正刚, 娄路亮, 张立强, 等. 冷气分离装置设计参数对冲量的影响[J]. 导弹与航天运载技术, 2011(4):1-3. |
[61] | 马鑫, 高东, 卞春江. 探空火箭载荷气动式分离释放装置设计[J]. 光学精密工程, 2020, 28(9):1986-1996. |
[62] | 罗世彬, 罗文彩, 张海联, 等. 基于全寿命周期费用分析的可重复使用运载器级数选择[J]. 国防科技大学学报, 2002, 24(1):9-13. |
[63] | 庄方方, 汪小卫, 吴胜宝. 可重复使用运载火箭全寿命周期费用分析[J]. 导弹与航天运载技术, 2016(6):82-85. |
[64] |
Freeman D C Jr, Talay T A. Reusable launch vehicle technology program[J]. Acta Astronautica, 1997, 41(11):777-790.
DOI URL |
[1] | LI Dong, LI Pingqi. Development and Future Trend of China’s Space Transportation System [J]. Science and Technology Foresight, 2022, 1(1): 51-61. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京公网安备 11010802038735号