[1] |
NSF-led National AI Research Resource Pilot awards first round access to 35 projects in partnership with DOE[EB/OL]. (2024-05-06)[2024-12-31]. https://www.nsf.gov/news/nsf-led-national-ai-research-resource-pilot-awards.
|
[2] |
NIST to Launch Competition for AI-Focused Manufacturing USA Institute[EB/OL]. (2024-03-04)[2024-12-31]. https://www.nist.gov/newsevents/news/2024/03/nist-launch-competition-ai-focusedmanufacturing-usa-institute.
|
[3] |
DOE announces roadmap for new initiative for artificial intelligence in science, security and technology[EB/OL]. (2024-07-16)[2024-12-31]. https://www.energy.gov/articles/doe-announces-roadmap-new-initiative-artificial-intelligence-science-security-and.
|
[4] |
Petkova D, Roman L. AI in science: Harnessing the power of AI to accelerate discovery and foster innovation: policy brief[R]. Brussels: Directorate-General for Research and Innovation, European Commission, 2023.
|
[5] |
Commission presents new initiatives boosting European industrial leadership in advanced materials[EB/OL]. (2024-02-29)[2024-12-31]. https://euraxess.ec.europa.eu/worldwide/south-korea/news/commission-presents-new-initiatives-boosting-european-industrial.
|
[6] |
£100m boost in AI research will propel transformative innovations[EB/OL]. (2024-02-06)[2024-12-31]. https://www.ukri.org/news/100m-boost-in-ai-research-will-propel-transformative-innovations/.
|
[7] |
Szymanski N J, Rendy B, Fei Y X, et al. An autonomous laboratory for the accelerated synthesis of novel materials[J]. Nature, 2023, 624(7990): 86-91.
|
[8] |
Boiko D A, MacKnight R, Kline B, et al. Autonomous chemical research with large language models[J]. Nature, 2023, 624(7992): 570-578.
|
[9] |
Slattery A, Wen Z H, Tenblad P, et al. Automated self-optimization, intensification, and scale-up of photocatalysis in flow[J]. Science, 2024, 383(6681): eadj1817, doi: 10.1126/science.adj1817.
|
[10] |
Zhu Q, Zhang F, Huang Y, et al. An all-round AI-chemist with a scientific mind[J]. National Science Review, 2022, 9(10): nwac190, doi: 10.1093/nsr/nwac190.
|
[11] |
Lu J M, Wang H F, Guo Q H, et al. Roboticized AI-assisted microfluidic photocatalytic synthesis and screening up to 10, 000 reactions per day[J]. Nature Communications, 2024, 15: 8826, doi: 10.1038/s41467-24-53204-6.
|
[12] |
Zhao H T, Chen W, Huang H, et al. A robotic platform for the synthesis of colloidal nanocrystals[J]. Nature Synthesis, 2023, 2: 505-514.
|
[13] |
DeepSeek-AI Guo D Y, Yang D J, et al. DeepSeek-R1: Incentivizing reasoning capability in LLMs via reinforcement learning[DB/OL]. arXiv preprint: 2501.12948, 2025.
|
[14] |
Taylor R, Kardas M, Cucurull G, et al. Galactica: A large language model for science[DB/OL]. arXiV preprint: 2211.09085, 2022.
|
[15] |
Luo R Q, Sun L A, Xia Y C, et al. BioGPT: Generative pre-trained transformer for biomedical text generation and mining[J]. Briefings in Bioinformatics, 2022, 23(6): bbac409, doi: 10.1093/bib/bbac409.
|
[16] |
Xie T, Wan Y W, Huang W, et al. DARWIN series: Domain specific large language models for natural science[DB/OL]. arXiv preprint: 2308.13565, 2023.
|
[17] |
Livne M, Miftahutdinov Z, Tutubalina E, et al. nach0: Multimodal natural and chemical languages foundation model[J]. Chemical Science, 2024, 15(22): 8380-8389.
DOI
PMID
|
[18] |
Zhang D, Liu W, Tan Q, et al. ChemLLM: A chemical large language model[DB/OL]. arXiv preprint: 2402.06852, 2024.
|
[19] |
Li J, Liu W, Ding Z, et al. Large language models are in-context molecule learners[DB/OL]. arXiv preprint: 2403.04197, 2024.
|
[20] |
Liu Y Y, Ding S R, Zhou S, et al. MolecularGPT: Open large language model (LLM) for few-shot molecular property prediction[DB/OL]. arXiv preprint: 2406.12950, 2024.
|
[21] |
Zhao Z H, Ma D, Chen L, et al. ChemDFM: A large language foundation model for chemistry[DB/OL]. arXiv preprint: 2401.14818, 2024.
|
[22] |
Huang Y Q, Zhang R Y, He X S, et al. ChemEval: A comprehensive multi-level chemical evaluation for large language models[DB/OL]. arXiv preprint: 2409.13989, 2024.
|
[23] |
Zhao Z H, Chen B, Li J P, et al. ChemDFM-X: Towards large multimodal model for chemistry[J]. Science China Information Sciences, 2024, 67(12): 220109, doi: 10.1007/s11432-024-4243-0.
|
[24] |
Chen Z X, Xie F K, Wan M, et al. MatChat: A large language model and application service platform for materials science[J]. Chinese Physics B, 2023, 32(11): 118104, doi: 10.1088/1674-1056/ad04cb.
|
[25] |
张林峰, 王涵. 模拟微观世界: 从薛定谔方程到大原子模型[J]. 物理, 2024, 53(7): 431-441.
|
|
Zhang L F, Wang H. Simulating the microscopic world: From the Schrödinger equation to the large atomic model[J]. Physics, 2024, 53(7): 431-441. (in Chinese)
|
[26] |
Chen C, Ong S P. A universal graph deep learning interatomic potential for the periodic table[J]. Nature Computational Science, 2022, 2(11): 718-728.
DOI
PMID
|
[27] |
Deng B W, Zhong P C, Jun K, et al. CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling[J]. Nature Machine Intelligence, 2023, 5: 1031-1041.
|
[28] |
Merchant A, Batzner S, Schoenholz S S, et al. Scaling deep learning for materials discovery[J]. Nature, 2023, 624(7990): 80-85.
|
[29] |
Zhang D, Liu X, Zhang X Y, et al. DPA-2: A large atomic model as a multi-task learner[J]. NPJ Computational Materials, 2024, 10: 293, doi: 10.1038/s41524-024-01493-2.
|