前瞻科技 ›› 2025, Vol. 4 ›› Issue (1): 16-27.DOI: 10.3981/j.issn.2097-0781.2025.01.002

• 综述与述评 • 上一篇    下一篇

智能驱动的材料研发态势及对策建议

温李阳(), 姚明佳, 陈忻()   

  1. 苏州国家实验室,苏州 215000
  • 收稿日期:2025-01-10 修回日期:2025-02-18 出版日期:2025-03-20 发布日期:2025-03-27
  • 通讯作者: 陈忻
  • 作者简介:温李阳,博士,助理研究员。主要从事材料数据库构建和材料领域通用大语言模型开发工作。入选江苏省“双创博士”项目、江苏省卓越博士后计划。发表论文10余篇,授权发明专利1件。电子信箱:wenly@szlab.ac.cn
    陈忻,研究员。材料智能研发平台负责人。享受国务院政府特殊津贴专家。主要从事融合材料计算、材料大数据和人工智能大模型的新方法等研究。主持国家科技创新2030—新一代人工智能重大项目、江苏省前沿引领技术基础研究重大项目等。获Stanford Graduate Fellow、Boston University Young Investigato、江苏省“双创人才”等荣誉。发表论文60余篇。授权发明专利30余件。电子信箱:mail.xinchen@gmail.com
  • 基金资助:
    新一代人工智能国家科技重大专项(2023ZD0120700);苏州实验室青年人才战略研究课题(QN202420)

Research and Development Progress of AI-driven Materials and Suggestions

WEN Liyang(), YAO Mingjia, CHEN Xin()   

  1. Suzhou Laboratory, Suzhou 215000, China
  • Received:2025-01-10 Revised:2025-02-18 Online:2025-03-20 Published:2025-03-27
  • Contact: CHEN Xin

摘要:

材料全流程智能化研发作为加速新材料研发和产业创新的重要手段,正推动材料科学从经验驱动向机器智能涌现的革命性转变。文章剖析了智能计算、自主实验、多模态数据库与领域大模型构成的技术协同体系,分析了各国在智能驱动的材料研发领域的战略布局特征与实施路径差异。通过解构大科学装置建设、跨尺度建模算法突破及人机协同知识发现机制的核心作用,提出基于“数据-算法-算力”三元融合的智能增强发现战略,以期为构建自主可控的新型材料研发范式提供系统性解决方案与技术演进框架。

关键词: 智能驱动, 自主实验, 多模态数据库, 智能计算, 大模型

Abstract:

As an important means to accelerate the research and development of new materials and industrial innovation, the intelligent research and development of materials during the whole process promotes the revolutionary transformation of experience-driven material science to the emergence of machine intelligence. This paper examined the technical synergy framework composed of intelligent computing, autonomous experiments, multimodal databases, and domain-specific large models and analyzed the strategic initiatives and divergent implementation paths for research and development of AI-driven materials across different countries. By deconstructing the pivotal roles of large-scale scientific infrastructure, breakthroughs in cross-scale modeling algorithms, and human-machine collaborative knowledge discovery mechanisms, this paper proposed a strategy for intelligence-enhanced discovery grounded in the triadic integration of data, algorithm, and computing power. This strategy offers a systematic solution and a technological evolution framework for establishing an autonomous and controllable paradigm for the research and development of new materials.

Key words: AI-driven, autonomous experimentation, multimodaldatabases, intelligent computation, large model