前瞻科技 ›› 2024, Vol. 3 ›› Issue (4): 91-104.DOI: 10.3981/j.issn.2097-0781.2024.04.008

• 综述与述评 • 上一篇    下一篇

氢安全风险评价技术发展现状与展望

张嘉欣1(), 姜雅宁1, 孔祥领2, 姚晨奕1, 巴清心1,3, 李雪芳1,3,()   

  1. 1.山东大学热科学与工程研究中心(高等技术研究院),济南 250061
    2.中国石油技术开发有限公司,北京 100028
    3.山东大学高效储能及氢能利用山东省工程研究中心,济南 250061
  • 收稿日期:2024-09-30 修回日期:2024-10-17 出版日期:2024-12-20 发布日期:2024-12-24
  • 通讯作者:
  • 作者简介:张嘉欣,博士研究生。主要从事氢安全风险评价、低温氢射流理论模型研究。电子信箱:202134242@mail.sdu.edu.cn
    李雪芳,副教授,博士研究生导师。中国动力工程学会青年工作委员会委员,中国汽车工程学会汽车火灾安全技术分会委员,国际氢能协会(IAHE)会员,中国可再生能源学会会员(氢能专业委员会),中国消防协会会员。主要从事氢能与氢安全研究。电子信箱:lixf@email.sdu.edu.cn
  • 基金资助:
    国家重点研发计划(2023YFB4004501)

Current Status and Prospects of Hydrogen Risk Assessment Technologies

ZHANG Jiaxin1(), JIANG Yaning1, KONG Xiangling2, YAO Chenyi1, BA Qingxin1,3, LI Xuefang1,3,()   

  1. 1. Institute of Thermal Science and Technology (Institute for Advanced Technology), Shandong University, Jinan 250061, China
    2. China Petroleum Technology and Development Corporation, Beijing 100028, China
    3. Shandong Engineering Research Center for High-efficiency Energy Storage and Hydrogen Energy Utilization, Shandong University, Jinan 250061, China
  • Received:2024-09-30 Revised:2024-10-17 Online:2024-12-20 Published:2024-12-24
  • Contact:

摘要:

面向氢能系统和设施的风险评价对预防氢事故、确保氢能安全应用至关重要。随着氢能商业化应用和推广,氢能应用场景的多样化对风险评价技术提出了更高的要求。文章总结了定性及定量风险评价的基础理论及方法,综述了氢能行业现有风险评价技术的发展现状和主要应用场景,并介绍了动态贝叶斯网络和人工神经网络等新兴的风险评价技术。在此基础上,指出目前在氢安全数据、动态化定量风险评价、风险评价流程和可接受标准、仿真与评价工具等方面所面临的挑战,并提出了未来氢安全风险评价技术发展的4点建议。

关键词: 氢能, 氢安全, 风险评价

Abstract:

Conducting risk assessments for hydrogen energy systems and facilities is essential for preventing hydrogen accidents and ensuring the safe use of hydrogen energy. With the advancement of commercial applications of hydrogen energy, diversified hydrogen energy application scenarios have put higher demands on risk assessment technologies. This paper summarized the fundamental theories and methods of both qualitative and quantitative risk assessments and reviewed the current development status and main application scenarios of existing risk assessment technologies in the hydrogen energy industry. Emerging risk assessment technologies, such as dynamic Bayesian networks and artificial neural networks, were introduced as well. On this basis, this paper highlighted current challenges in hydrogen safety data, dynamic quantitative risk assessment, risk assessment procedures and acceptable standards, and simulation and assessment tools. Finally, four recommendations were proposed for the future development of hydrogen risk assessment technologies.

Key words: hydrogen energy, hydrogen safety, risk assessment