前瞻科技 ›› 2024, Vol. 3 ›› Issue (4): 91-104.DOI: 10.3981/j.issn.2097-0781.2024.04.008
张嘉欣1(), 姜雅宁1, 孔祥领2, 姚晨奕1, 巴清心1,3, 李雪芳1,3,†(
)
收稿日期:
2024-09-30
修回日期:
2024-10-17
出版日期:
2024-12-20
发布日期:
2024-12-24
通讯作者:
†
作者简介:
张嘉欣,博士研究生。主要从事氢安全风险评价、低温氢射流理论模型研究。电子信箱:202134242@mail.sdu.edu.cn。基金资助:
ZHANG Jiaxin1(), JIANG Yaning1, KONG Xiangling2, YAO Chenyi1, BA Qingxin1,3, LI Xuefang1,3,†(
)
Received:
2024-09-30
Revised:
2024-10-17
Online:
2024-12-20
Published:
2024-12-24
Contact:
†
摘要:
面向氢能系统和设施的风险评价对预防氢事故、确保氢能安全应用至关重要。随着氢能商业化应用和推广,氢能应用场景的多样化对风险评价技术提出了更高的要求。文章总结了定性及定量风险评价的基础理论及方法,综述了氢能行业现有风险评价技术的发展现状和主要应用场景,并介绍了动态贝叶斯网络和人工神经网络等新兴的风险评价技术。在此基础上,指出目前在氢安全数据、动态化定量风险评价、风险评价流程和可接受标准、仿真与评价工具等方面所面临的挑战,并提出了未来氢安全风险评价技术发展的4点建议。
张嘉欣, 姜雅宁, 孔祥领, 姚晨奕, 巴清心, 李雪芳. 氢安全风险评价技术发展现状与展望[J]. 前瞻科技, 2024, 3(4): 91-104.
ZHANG Jiaxin, JIANG Yaning, KONG Xiangling, YAO Chenyi, BA Qingxin, LI Xuefang. Current Status and Prospects of Hydrogen Risk Assessment Technologies[J]. Science and Technology Foresight, 2024, 3(4): 91-104.
数据库名称 | 国家/地区 | 记录的事故数量 | 数据管理方 |
---|---|---|---|
高压气体事故数据库[ | 日本 | 未专门统计氢能事故 | 高压气体安全研究所(日本) |
H2 Tools[ | 美国 | 221 | 太平洋西北国家实验室(美国) |
氢事件和事故数据库(HIAD)[ | 全球范围 | 755 | 欧盟联合研究中心(荷兰) |
表1 氢事故数据库
Table 1 Hydrogen accident database
数据库名称 | 国家/地区 | 记录的事故数量 | 数据管理方 |
---|---|---|---|
高压气体事故数据库[ | 日本 | 未专门统计氢能事故 | 高压气体安全研究所(日本) |
H2 Tools[ | 美国 | 221 | 太平洋西北国家实验室(美国) |
氢事件和事故数据库(HIAD)[ | 全球范围 | 755 | 欧盟联合研究中心(荷兰) |
[1] |
凌文, 刘玮, 李育磊, 等. 中国氢能基础设施产业发展战略研究[J]. 中国工程科学, 2019, 21(3): 76-83.
DOI |
Ling W, Liu W, Li Y L, et al. Development strategy of hydrogen infrastructure industry in China[J]. Strategic Study of CAE, 2019, 21(3): 76-83. (in Chinese)
DOI |
|
[2] | 郑津洋, 张俊峰, 陈霖新, 等. 氢安全研究现状[J]. 安全与环境学报, 2016, 16(6): 144-152. |
Zheng J Y, Zhang J F, Chen L X, et al. Research status in situ of hydrogen safety[J]. Journal of Safety and Environment, 2016, 16(6): 144-152. (in Chinese) | |
[3] | 毛宗强, 王昌建, 李权, 等. 氢安全[M]. 北京: 化学工业出版社, 2020. |
Mao Z Q, Wang C J, Li Q, et al. Hydrogen safety[M]. Beijing: Chemical Industry Press, 2020. (in Chinese) | |
[4] | 李志勇, 潘相敏, 马建新. 加氢站氢气事故后果量化评价[J]. 同济大学学报(自然科学版), 2012, 40(2): 286-291. |
Li Z Y, Pan X M, Ma J X. Quantitative assessment on hydrogen releases of hydrogen refueling station by consequence modeling[J]. Journal of Tongji University (Natural Science), 2012, 40(2): 286-291. (in Chinese) | |
[5] | Haimes Y Y. Risk modeling, assessment, and management[M]. Hoboken: John Wiley & Sons, Inc., 2004. |
[6] | Kikukawa S, Mitsuhashi H, Miyake A. Risk assessment for liquid hydrogen fueling stations[J]. International Journal of Hydrogen Energy, 2009, 34(2): 1135-1141. |
[7] | Suzuki T, Izato Y I, Miyake A. Identification of accident scenarios caused by internal factors using HAZOP to assess an organic hydride hydrogen refueling station involving methylcyclohexane[J]. Journal of Loss Prevention in the Process Industries, 2021, 71, doi: 10.1016/j.jlp.2021.104479. |
[8] | Hirayama M, Shinozaki H, Kasai N, et al. Comparative risk study of hydrogen and gasoline dispensers for vehicles[J]. International Journal of Hydrogen Energy, 2018, 43(27): 12584-12594. |
[9] | Hadef H, Negrou B, Ayuso T G, et al. Preliminary hazard identification for risk assessment on a complex system for hydrogen production[J]. International Journal of Hydrogen Energy, 2020, 45(20): 11855-11865. |
[10] | Nakayama J, Kasai N, Shibutani T, et al. Security risk analysis of a hydrogen fueling station with an on-site hydrogen production system involving methylcyclohexane[J]. International Journal of Hydrogen Energy, 2019, 44(17): 9110-9119. |
[11] | Pan X M, Li Z Y, Zhang C M, et al. Safety study of a wind-solar hybrid renewable hydrogen refuelling station in China[J]. International Journal of Hydrogen Energy, 2016, 41(30): 13315-13321. |
[12] | Ehrhart B D, Harris S R, Blaylock M L, et al. Risk assessment and ventilation modeling for hydrogen releases in vehicle repair garages[J]. International Journal of Hydrogen Energy, 2021, 46(23): 12429-12438. |
[13] | Kasai N, Fujimoto Y, Yamashita I, et al. The qualitative risk assessment of an electrolytic hydrogen generation system[J]. International Journal of Hydrogen Energy, 2016, 41(30): 13308-13314. |
[14] | Li F, Zhang L B, Dong S H, et al. Risk assessment of bolt-gasket-flange connection (BGFC) failures at hydrogen transfer stations based on improved FMEA[J]. International Journal of Hydrogen Energy, 2024, 50: 700-716. |
[15] | Shen Y H, Lü H, Hu Y Q, et al. Preliminary hazard identification for qualitative risk assessment on onboard hydrogen storage and supply systems of hydrogen fuel cell vehicles[J]. Renewable Energy, 2023, 212: 834-854. |
[16] | Duijm N J, Markert F. Safety-barrier diagrams as a tool for modelling safety of hydrogen applications[J]. International Journal of Hydrogen Energy, 2009, 34(14): 5862-5868. |
[17] | Casamirra M, Castiglia F, Giardina M, et al. Safety studies of a hydrogen refuelling station: Determination of the occurrence frequency of the accidental scenarios[J]. International Journal of Hydrogen Energy, 2009, 34(14): 5846-5854. |
[18] | Kim E, Lee K, Kim J, et al. Development of Korean hydrogen fueling station codes through risk analysis[J]. International Journal of Hydrogen Energy, 2011, 36(20): 13122-13131. |
[19] | Rodionov A, Wilkening H, Moretto P. Risk assessment of hydrogen explosion for private car with hydrogen-driven engine[J]. International Journal of Hydrogen Energy, 2011, 36(3): 2398-2406. |
[20] | Correa-Jullian C, Groth K M. Data requirements for improving the quantitative risk assessment of liquid hydrogen storage systems[J]. International Journal of Hydrogen Energy, 2022, 47(6): 4222-4235. |
[21] | TNO. Guidelines for the quantitative risk assessment, purple book[M]. Soesterberg: Committee for the Prevention of Disasters, 2005. |
[22] | TNO. Methods for determining and processing probabilities, red book[M]. Soesterberg: Committee for the Prevention of Disasters, 1997. |
[23] | TNO. Methods for the calculation of physical effects, yellow book[M]. Soesterberg: Committee for the Prevention of Disasters, 1997. |
[24] | TNO. Methods for the calculation of possible damage, green book[M]. Soesterberg: Committee for the Prevention of Disasters, 1992. |
[25] | LaChance J. Risk-informed separation distances for hydrogen refueling stations[J]. International Journal of Hydrogen Energy, 2009, 34(14): 5838-5845. |
[26] | Kim D H, Lim J Y, Park W I, et al. Quantitative risk assessment of a mobile hydrogen refueling station in Korea[J]. International Journal of Hydrogen Energy, 2022, 47(78): 33541-33549. |
[27] | Dadashzadeh M, Kashkarov S, Makarov D, et al. Risk assessment methodology for onboard hydrogen storage[J]. International Journal of Hydrogen Energy, 2018, 43(12): 6462-6475. |
[28] | Froeling H A J, Dröge M T, Nane G F, et al. Quantitative risk analysis of a hazardous jet fire event for hydrogen transport in natural gas transmission pipelines[J]. International Journal of Hydrogen Energy, 2021, 46(17): 10411-10422. |
[29] | Mouli-Castillo J, Haszeldine S R, Kinsella K, et al. A quantitative risk assessment of a domestic property connected to a hydrogen distribution network[J]. International Journal of Hydrogen Energy, 2021, 46(29): 16217-16231. |
[30] | Safety aspects-guidelines for their inclusion in standards: ISO/IEC Guide 51. 2nd ed: 1999[S/OL]. [2024-07-11]. https://www.iso.org/standard/53940.html. |
[31] | Risk management-vocabulary-guidelines for use in standards: ISO/IEC Guide 73. 1st ed: 1999[S/OL]. [2024-07-11]. https://www.iso.org/standard/44651.html. |
[32] | Accident Examples Database. The high pressure gas safety institute of Japan[EB/OL]. [2024-06-25]. https://www.khk.or.jp/english/report.html. |
[33] | H2 Tools. Pacific national northwest laboratory[EB/OL]. [2024-06-25]. https://h2tools.org/lessons. |
[34] | HIAD data base in odin: Online data & information network for energy. European Commission[EB/OL]. [2024-06-25]. https://minerva.jrc.ec.europa.eu/en/shorturl/capri/hiadpt. |
[35] | Oreda P. Offshore reliability data handbook[M]. Høvik: OREDA, 1984. |
[36] | HSE U K. Failure rate and event data for use within risk assessments[R]. Buxton: Health and Safety Executive, 2012. |
[37] | Groth K M, Hecht E S. HyRAM: A methodology and toolkit for quantitative risk assessment of hydrogen systems[J]. International Journal of Hydrogen Energy, 2017, 42(11): 7485-7493. |
[38] | LaChance J, Houf W, Fluer L, et al. Analyses to support development of risk-informed separation distances for hydrogen codes and standards[R]. Albuquerque: Sandia National Laboratories (SNL), 2009. |
[39] | Gye H R, Seo S K, Bach Q V, et al. Quantitative risk assessment of an urban hydrogen refueling station[J]. International Journal of Hydrogen Energy, 2019, 44(2): 1288-1298. |
[40] | Suzuki T, Shiota K, Izato Y I, et al. Quantitative risk assessment using a Japanese hydrogen refueling station model[J]. International Journal of Hydrogen Energy, 2021, 46(11): 8329-8343. |
[41] | Kodoth M, Aoyama S, Sakamoto J, et al. Leak frequency analysis for hydrogen-based technology using Bayesian and frequentist methods[J]. Process Safety and Environmental Protection, 2020, 136: 148-156. |
[42] | Gaseous Hydrogen-fuelling Stations. International organization for standardization: ISO/TS 20100: 2008[S]. [2024-07-11]. https://www.iso.org/standard/39206.html. |
[43] | Groth K M, LaChance J L, Harris A P. Early-stage quantitative risk assessment to support development of codes and standard requirements for indoor fueling of hydrogen vehicles[R]. Albuquerque: Sandia National Laboratories, 2012. |
[44] | Tchouvelev A V. Knowledge gaps in hydrogen safety, a white paper[R]. Paris:IEA HIA Task 19, 2008. |
[45] | Ruggles A J, Ekoto I W. Ignitability and mixing of underexpanded hydrogen jets[J]. International Journal of Hydrogen Energy, 2012, 37(22): 17549-17560. |
[46] | Yao C Y, Ba Q X, Hecht E S, et al. Concentration fluctuations and flammability of cryo-compressed hydrogen and methane jets[J]. Fuel, 2024, 358, doi: 10.1016/j.fuel.2023.130230. |
[47] | Tsunemi K, Kihara T, Kato E, et al. Quantitative risk assessment of the interior of a hydrogen refueling station considering safety barrier systems[J]. International Journal of Hydrogen Energy, 2019, 44(41): 23522-23531. |
[48] | Al-shanini A, Ahmad A, Khan F. Accident modelling and safety measure design of a hydrogen station[J]. International Journal of Hydrogen Energy, 2014, 39(35): 20362-20370. |
[49] | Mirzaei A M, Pourhasan A, Mohammadfam I. Risk modelling of a hydrogen gasholder using Fuzzy Bayesian Network (FBN)[J]. International Journal of Hydrogen Energy, 2020, 45(1): 1177-1186. |
[50] | Cui J T, Kong Y Y, Liu C W, et al. Failure probability analysis of hydrogen doped pipelines based on the Bayesian network[J]. Engineering Failure Analysis, 2024, 156, doi: 10.1016/j.engfailanal.2023.107806. |
[51] | Pasman H J, Rogers W J. Risk assessment by means of Bayesian networks: A comparative study of compressed and liquefied H2 transportation and tank station risks[J]. International Journal of Hydrogen Energy, 2012, 37(22): 17415-17425. |
[52] | Ma Q J, He Y, You J F, et al. Probabilistic risk assessment of fire and explosion of onboard high-pressure hydrogen system[J]. International Journal of Hydrogen Energy, 2024, 50: 1261-1273. |
[53] | Yazdi M, Kabir S. A fuzzy Bayesian network approach for risk analysis in process industries[J]. Process Safety and Environmental Protection, 2017, 111: 507-519. |
[54] | Xing Y X, Wu J S, Bai Y P, et al. All-process risk modelling of typical accidents in urban hydrogen refueling stations[J]. Process Safety and Environmental Protection, 2022, 166: 414-429. |
[55] | Skjold T, Siccama D, Hisken H, et al. 3D risk management for hydrogen installations[J]. International Journal of Hydrogen Energy, 2017, 42(11): 7721-7730. |
[56] | 刘迪, 党文义, 王溪舸, 等. 油氢合建站典型泄漏火灾热辐射后果模拟分析[J]. 消防科学与技术, 2021, 40(6): 851-854. |
Liu D, Dang W Y, Wang X G, et al. Simulation analysis of thermal radiation consequences of typical leakage fire in oil and hydrogen refueling station[J]. Fire Science and Technology, 2021, 40(6): 851-854. (in Chinese) | |
[57] | Shi J H, Chang Y J, Khan F, et al. Methodological improvements in the risk analysis of an urban hydrogen fueling station[J]. Journal of Cleaner Production, 2020, 257, doi: 10.1016/j.jclepro.2020.120545. |
[58] | Andrews J D, Moss T R. Reliability and risk assessment[M]. Harlow: Longman Scientific & Technical, 1993: 368. |
[59] | Norsk Hydro AS DNV. Methodology for rapid risk ranking for hydrogen refueling station concepts[R]. Brusel:European Integrated Hydrogen Project Phase 2, 2002. |
[60] | LaChance J. Uniform risk acceptance and harm criteria—IEA HIA task 19 perspective[R/OL]. (2009-09-16) [2024-06-15]. https://conference.ing.unipi.it/ichs2009/images/stories/presentations/Topical-6-LaChance.pdf. |
[61] | 《危险化学品生产、储存装置个人可接受风险标准和社会可接受风险标准(试行)》解读. [EB/OL]. (2014-06-27)[2024-06-15]. https://www.mem.gov.cn/gk/zcjd/201406/t20140627_233065.shtml. |
Interpretation of personally acceptable risk standards and socially acceptable risk standards for hazardous chemical production and storage devices (Trial)[EB/OL]. (2014-06-27)[2024-06-15]. https://www.mem.gov.cn/gk/zcjd/201406/t20140627_233065.shtml. (in Chinese) | |
[62] | Chang Y J, Zhang C S, Shi J H, et al. Dynamic Bayesian network based approach for risk analysis of hydrogen generation unit leakage[J]. International Journal of Hydrogen Energy, 2019, 44(48): 26665-26678. |
[63] | Zhang J X, Shi M H, Lang X S, et al. Dynamic risk evaluation of hydrogen station leakage based on fuzzy dynamic Bayesian network[J]. International Journal of Hydrogen Energy, 2024, 50: 1131-1145. |
[64] | Wang X Y, Zhang C S, Gao W. Risk assessment of hydrogen leakage in diesel hydrogenation process[J]. International Journal of Hydrogen Energy, 2022, 47(10): 6955-6964. |
[65] | Wang X Y, Gao W. Hydrogen leakage risk assessment for hydrogen refueling stations[J]. International Journal of Hydrogen Energy, 2023, 48(91): 35795-35808. |
[66] | Zarei E, Khan F, Yazdi M. A dynamic risk model to analyze hydrogen infrastructure[J]. International Journal of Hydrogen Energy, 2021, 46(5): 4626-4643. |
[67] | Shi J H, Chang B, Khan F, et al. Stochastic explosion risk analysis of hydrogen production facilities[J]. International Journal of Hydrogen Energy, 2020, 45(24): 13535-13550. |
[68] | Hu Q C, Zhang X H, Li Q L, et al. Prediction and interpretability of accidental explosion loads from hydrogen-air mixtures using CFD and artificial neural network method[J]. International Journal of Hydrogen Energy, 2024, 66: 135-147. |
[69] | Xie W K, Li J J, Shi J H, et al. Probabilistic real-time natural gas jet fire consequence modeling of offshore platforms by hybrid deep learning approach[J]. Marine Pollution Bulletin, 2023, 192, doi: 10.1016/j.marpolbul.2023.115098. |
[70] | 张新琪, 师吉浩, 陈国明. 基于物理信息深度学习的氢气泄漏扩散预测[J]. 消防科学与技术, 2024, 43(5): 698-703. |
Zhang X Q, Shi J H, Chen G M. Prediction of hydrogen jet diffusion based on physicsinformed deep learning[J]. Fire Science and Technology, 2024, 43(5): 698-703. (in Chinese) | |
[71] | Li J J, Xie Z H, Liu K, et al. Real time hydrogen plume spatiotemporal evolution forecasting by using deep probabilistic spatial-temporal neural network[J]. International Journal of Hydrogen Energy, 2024, 72: 878-891. |
[72] | He X, Kong D P, Yu X R, et al. Prediction model for the evolution of hydrogen concentration under leakage in hydrogen refueling station using deep neural networks[J]. International Journal of Hydrogen Energy, 2024, 51: 702-712. |
[73] | Zhao M B, Huang T, Liu C H, et al. Leak localization using distributed sensors and machine learning for hydrogen releases from a fuel cell vehicle in a parking garage[J]. International Journal of Hydrogen Energy, 2021, 46(1): 1420-1433. |
[74] |
曹湘洪, 魏志强. 氢能利用安全技术研究与标准体系建设思考[J]. 中国工程科学, 2020, 22(5): 144-151.
DOI |
Cao X H, Wei Z Q. Technologies for the safe use of hydrogen and construction of the safety standards system[J]. Strategic Study of CAE, 2020, 22(5): 144-151. (in Chinese)
DOI |
|
[75] | 中国工业气体工业协会. 加氢站风险评估指南: T/CCGA 40013—2022[S]. 北京: 中国工业气体工业协会, 2022. |
China Industrial Gas Industry Association. Guidelines for risk assessment of hydrogen fuelling stations: T/CCGA 40013-2022[S]. Beijing: China Industrial Gas Industry Association, 2022. |
[1] | 鲍春竹, 于海峰, 高华玲, 向中华. 中国氢能学科人才培养现状与展望[J]. 前瞻科技, 2024, 3(4): 111-120. |
[2] | 孟翔宇, 邬新国, 顾阿伦, 曾静, 陈铭韵, 刘滨, 周剑, 毛宗强. 国际氢能发展战略及对中国的启示[J]. 前瞻科技, 2024, 3(4): 121-133. |
[3] | 王晓胜, 梁心茹, 周红军, 徐春明. 氢化工发展现状、挑战及对策建议[J]. 前瞻科技, 2024, 3(4): 34-43. |
[4] | 陈文淼, 凌文. 中国氢能交通发展关键问题与对策建议[J]. 前瞻科技, 2024, 3(4): 58-68. |
[5] | 马林聪, 鲍威. 中国氢能产业标准化现状与趋势[J]. 前瞻科技, 2024, 3(4): 105-110. |
[6] | 李玉星, 刘翠伟, 彭浩平, 韩辉, 朱建鲁, 宋光春, 王财林. 氢能运输方式与技术发展现状及挑战[J]. 前瞻科技, 2024, 3(2): 81-93. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京公网安备 11010802038735号