前瞻科技 ›› 2024, Vol. 3 ›› Issue (4): 34-43.DOI: 10.3981/j.issn.2097-0781.2024.04.003
王晓胜1,2(), 梁心茹1,2, 周红军1,2, 徐春明1,2,†(
)
收稿日期:
2024-10-25
修回日期:
2024-11-06
出版日期:
2024-12-20
发布日期:
2024-12-24
通讯作者:
†
作者简介:
王晓胜,副教授。主要从事清洁能源高效利用研究。电子信箱:wxs880620@cup.edu.cn。基金资助:
WANG Xiaosheng1,2(), LIANG Xinru1,2, ZHOU Hongjun1,2, XU Chunming1,2,†(
)
Received:
2024-10-25
Revised:
2024-11-06
Online:
2024-12-20
Published:
2024-12-24
Contact:
†
摘要:
氢能是推动传统化石能源清洁高效利用和支撑可再生能源大规模发展的理想媒介,也是实现“碳达峰与碳中和”目标的重要抓手。目前,在化工、交通、电力等诸多领域的氢能应用场景中,以合成氨、合成甲醇、石油化工为主的化工利用占主导地位,因此利用好、发展好氢能在化工行业中的应用,即氢化工,是推动氢能产业发展的关键。文章综述了氢化工的发展现状,总结了氢化工发展存在的关键问题,并提出加快绿氢对灰氢的存量替代、加强输氢管网等基础设施建设、推进核心技术攻关、制定氢能标准体系、探索标准快速迭代机制等建议。
王晓胜, 梁心茹, 周红军, 徐春明. 氢化工发展现状、挑战及对策建议[J]. 前瞻科技, 2024, 3(4): 34-43.
WANG Xiaosheng, LIANG Xinru, ZHOU Hongjun, XU Chunming. Current Status, Challenges, and Countermeasures of Hydrogen Chemical Industry Development[J]. Science and Technology Foresight, 2024, 3(4): 34-43.
[1] | 戴远哲, 涂远东, 曹圆媛. 我国氢能产业发展现状、制约瓶颈及应对策略[J]. 能源研究与利用, 2024(4): 29-33, 39. |
Dai Y Z, Tu Y D, Cao Y Y. Development status, constraints and countermeasures of hydrogen energy industry in China[J]. Energy Research & Utilization, 2024(4): 29-33, 39. (in Chinese) | |
[2] | 舟丹. 全球绿氢市场预测[J]. 中外能源, 2024, 29(10): 61. |
Zhou D. Global green hydrogen market forecast[J]. Sino-Global Energy, 2024, 29(10): 61. (in Chinese) | |
[3] | Liu Z Z, Sun H Z, Xia Y L, et al. Technology development review and economic analysis of power-hydrogen-chemical integrated energy systems[C]// 2023 5th Asia Energy and Electrical Engineering Symposium (AEEES). Piscataway: IEEE Press, 2023: 1759-1764. |
[4] | 刘泽洪, 孟婧, 张瑾轩, 等. 电-氢-碳耦合促进新能源基地开发模式研究[J]. 全球能源互联网, 2024, 7(5): 473-491. |
Liu Z H, Meng J, Zhang J X, et al. Research on the development model of new energy bases based on the electricity-hydrogen-carbon synergy[J]. Journal of Global Energy Interconnection, 2024, 7(5): 473-491. (in Chinese) | |
[5] | Do T N, Kwon H, Park M, et al. Carbon-neutral hydrogen production from natural gas via electrified steam reforming: Techno-economic-environmental perspective[J]. Energy Conversion and Management, 2023, 279, doi: 10.1016/j.enconman.2023.116758. |
[6] | 仲蕊. 绿氢化工协同发展潜力大[N]. 中国能源报,2023-10-23(009). |
Zhong R. Green hydrogen chemical synergistic development potential[N]. China Energy News, 2023-10-23(009). (in Chinese) | |
[7] | 王明华. 国内氢能应用场景分析及发展前景预测[J]. 石油炼制与化工, 2023, 54(9): 18-23. |
Wang M H. Application scenarios analysis and development prospect prediction of domestic hydrogen energy[J]. Petroleum Processing and Petrochemicals, 2023, 54(9): 18-23. (in Chinese) | |
[8] | Erfani N, Baharudin L, Watson M. Recent advances and intensifications in Haber-Bosch ammonia synthesis process[J]. Chemical Engineering and Processing-Process Intensification, 2024, 204, doi: 10.1016/j.cep.2024.109962. |
[9] | 荣杨佳, 王成雄, 张秀娟, 等. 低温电化学合成氨催化剂研究进展[J]. 贵金属, 2021, 42(4): 76-86. |
Rong Y J, Wang C X, Zhang X J, et al. Research progress of low-temperature electrochemical ammonia synthesis catalyst[J]. Precious Metals, 2021, 42(4): 76-86. (in Chinese) | |
[10] | Cherkasova T G, Barantsev D A, Plotnikov V A, et al. Hydrofluorination of coal ash of kuzbass thermal coal[J]. Vestnik of Kuzbass State Technical University, 2023(5): 40-46. |
[11] | 袁明. KAAP氨合成工艺技术特点及应用概况[J]. 大氮肥, 2002, 25(2): 91-92. |
Yuan M. Technical properties of KAAP ammonia synthesis and its application[J]. Large Scale Nitrogenous Fertilizer Industry, 2002, 25(2): 91-92. (in Chinese) | |
[12] | 吴锦, 邹隆志, 陈扬, 等. 双碳目标下以煤炭为基础的氨合成与清洁利用的未来与挑战[J]. 洁净煤技术, 2023, 29(7): 21-50. |
Wu J, Zou L Z, Chen Y, et al. Future and challenge of coal based ammonia synthesis and clean utilization under the double carbon target[J]. Clean Coal Technology, 2023, 29(7): 21-50. (in Chinese) | |
[13] | 赵晓光, 王云龙, 尹海波, 等. 不同氮源用于电催化合成氨的研究进展[J]. 高等学校化学学报, 2024, 45(3): 136-155. |
Zhao X G, Wang Y L, Yin H B, et al. Research progress of electrocatalytic ammonia synthesis from different nitrogen sources[J]. Chemical Journal of Chinese Universities, 2024, 45(3): 136-155. (in Chinese) | |
[14] | Haber F, van Oordt G. Über die bildung von ammoniak den elementen[J]. Zeitschrift Für Anorganische Chemie, 1905, 44(1): 341-378. |
[15] |
陈科宇, 徐金鑫, 吴桂波, 等. 绿氨产业现状及发展展望[J]. 化工进展, 2024, 43(5): 2544-2553.
DOI |
Chen K Y, Xu J X, Wu G B, et al. Current situation and development prospect of green ammonia industry[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2544-2553. (in Chinese)
DOI |
|
[16] | 苏文华, 文丽梅, 张晓梦, 等. 考虑风光融合的多稳态合成氨经济优化研究[J]. 太阳能学报, 2024, 45(9): 210-218. |
Su W H, Wen L M, Zhang X M, et al. Economic optimization of multi-stable ammonia synthesis considering solar-wind fusion[J]. Acta Energiae Solaris Sinica, 2024, 45(9): 210-218. (in Chinese) | |
[17] | 孙立, 余潜跃, 张玉琼, 等. 基于绿电转氨的综合能源生产单元经济性与碳足迹评估[J]. 中国电机工程学报, doi: 10.13334/j.0258-8013.pcsee.232068. |
Sun L, Yu Q Y, Zhang Y Q, et al. Economic and carbon footprint assessment of Iintegrated energy production units based on green power to ammonia conversion[J]. CSEE Journal of Power and Energy Systems, doi: 10.13334/j.0258-8013.pcsee.232068. (in Chinese) | |
[18] |
van Geem K M, Galvita V V, Marin G B. Making chemicals with electricity[J]. Science, 2019, 364(6442): 734-735.
DOI PMID |
[19] | Kyriakou V, Garagounis I, Vasileiou E, et al. Progress in the electrochemical synthesis of ammonia[J]. Catalysis Today, 2017, 286: 2-13. |
[20] | Cui X Y, Tang C, Zhang Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions[J]. Advanced Energy Materials, 2018, 8(22), doi: 10.1002/aenm.201800369. |
[21] |
王明华. 不同应用场景下新能源制氢合成绿氨经济性分析[J]. 现代化工, 2023, 43(11): 1-4, 9.
DOI |
Wang M H. Competitiveness analysis of green ammonia synthesis from new energy hydrogen production in different application scenarios[J]. Modern Chemical Industry, 2023, 43(11): 1-4, 9. (in Chinese) | |
[22] | Ullah A, Hashim N A, Rabuni M F, et al. A review on methanol as a clean energy carrier: Roles of zeolite in improving production efficiency[J]. Energies, 2023, 16(3), doi: 10.3390/en16031482. |
[23] | Kim T, Kim D, Kim Y, et al. Design and analysis of negative CO2 emission methanol synthesis process incorporating green hydrogen and blue hydrogen[J]. Journal of Cleaner Production, 2024, 476, doi: 10.1016/j.jclepro.2024.143796. |
[24] | Tijm P J A, Waller F J, Brown D M. Methanol technology developments for the new millennium[J]. Applied Catalysis A: General, 2001, 221(1/2): 275-282. |
[25] |
Bobadilla L F, Azancot L, González-Castaño M, et al. Biomass gasification, catalytic technologies and energy integration for production of circular methanol: New horizons for industry decarbonisation[J]. Journal of Environmental Sciences, 2024, 140: 306-318.
DOI PMID |
[26] | Merkouri L P, Mathew J, Jacob J, et al. Switchable catalysis for methanol and synthetic natural gas synthesis from CO2: A techno-economic investigation[J]. Journal of CO2 Utilization, 2024, 79, doi: 10.1016/j.jcou.2023.102652. |
[27] | Fitzpatrick T. Synthesis of methanol[J]. Oil Gas-European Magazine, 2001, 27(2): 40-44. |
[28] | Sabatier P. How I have been led to the direct hydrogenation method by metallic catalysts1[J]. Industrial & Engineering Chemistry, 1926, 18(10): 1005-1008. |
[29] | Mockenhaupt B, Gieser J, Najafishirtari S, et al. On the secondary promotion effect of Al and Ga on Cu/ZnO methanol synthesis catalysts[J]. Journal of Catalysis, 2024, 439, doi: 10.1016/j.jcat.2024.115785. |
[30] | Guo C X, Li M, Guo W M, et al. Quench-induced Cu-ZnO catalyst for hydrogen production from methanol steam reforming[J]. Chemical Engineering Journal, 2024, 486, doi: 10.1016/j.cej.2024.150331. |
[31] | An H Q, Liu Z, Mu S J. Process analysis of a novel coal-to-methanol technology for gasification integrated solid oxide electrolysis cell (SOEC)[J]. International Journal of Hydrogen Energy, 2023, 48(26): 9805-9811. |
[32] | Safder U, Loy-Benitez J, Yoo C. Techno-economic assessment of a novel integrated multigeneration system to synthesize e-methanol and green hydrogen in a carbon-neutral context[J]. Energy, 2024, 290, doi: 10.1016/j.energy.2023.130104. |
[33] | Varela H, Paredes-Salazar E A, Lima F H B, et al. Renewable methanol and the energy challenge: The role of electrocatalysis[J]. Current Opinion in Electrochemistry, 2024, 46, doi: 10.1016/j.coelec.2024.101539. |
[34] | 宋国辉, 梁珑鑫, 叶荣昕, 等. CO2与绿氢合成甲醇的过程模拟及储能性能分析[J]. 可再生能源, 2024, 42(6): 725-731. |
Song G H, Liang L X, Ye R X, et al. Process simulation and energy storage performance analysis of methanol synthesis from CO2 and green hydrogen[J]. Renewable Energy Resources, 2024, 42(6): 725-731. (in Chinese) | |
[35] | 唐春, 周乐懿, 李东升, 等. 绿氢制绿甲醇的技术经济可行性分析[J]. 世界石油工业, 2024, 31(1): 92-99. |
Tang C, Zhou L Y, Li D S, et al. Techno-economic feasibility analysis of green hydrogen to green methanol[J]. World Oil Industry, 2024, 31(1): 92-99. (in Chinese) | |
[36] | 武云飞, 王莹莹, 朱家龙, 等. 绿色甲醇生产与应用协同发展实施路径探讨[J]. 煤炭加工与综合利用, 2024(9): 38-45. |
Wu Y F, Wang Y Y, Zhu J L, et al. Discussion on the implementation path of synergistic development of green methanol production and application[J]. Coal Processing & Comprehensive Utilization, 2024(9): 38-45. (in Chinese) | |
[37] | Liang J Q, Liu D Z, Xu S L, et al. Comparison of light olefins production routes in China: Combining techno-economics and security analysis[J]. Chemical Engineering Research and Design, 2023, 194: 225-241. |
[38] | 王树国. 石化行业氢能开发利用现状及发展趋势[J]. 电气时代, 2024(1): 38-41. |
Wang S G. Present situation and development trend of hydrogen energy development and utilization in petrochemical industry[J]. Electric Age, 2024(1): 38-41. (in Chinese) | |
[39] | Liang B, Chen C, Jia C S, et al. Carbon capture, utilization and storage (CCUS) in oil and gas reservoirs in China: Status, opportunities and challenges[J]. Fuel, 2024, 375, doi: 10.1016/j.fuel.2024.132353. |
[40] | Davarpanah A. Comparative evaluation of carbon capture, utilization, and storage (CCUS) technologies using multi-criteria decision-making approaches[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(25): 9498-9510. |
[41] | 杨敏, 杨岭敏. 中国石化质子交换膜电解水制氢示范项目平稳运行[N]. 中国石化报, 2023-03-13(008). |
Yang M, Yang L M. SINOPEC Proton exchange membrane water hydrogen demonstration project runs smoothly[N]. China Petrochemical News, 2023-03-13(008). (in Chinese) | |
[42] | 邱一苇, 吉旭, 朱文聪, 等. 面向新能源规模化消纳的绿氢化工技术研究现状与关键支撑技术展望[J]. 中国电机工程学报, 2023, 43(18): 6934-6955. |
Qiu Y W, Ji X, Zhu W C, et al. Research status of green hydrogen-based chemical engineering technology and prospect of key supporting technologies for large-scale utilization of new energies[J]. Proceedings of the Chinese Society of Electrical Engineering, 2023, 43(18): 6934-6955. (in Chinese) | |
[43] | 张微. 制氢技术进展及经济性分析[J]. 当代石油石化, 2022, 30(7): 31-36. |
Zhang W. The progress and economic analysis of hydrogen production technology[J]. Petroleum & Petrochemical Today, 2022, 30(7): 31-36. (in Chinese) | |
[44] | Gao B, He Y, Zhao Y M, et al. Development and application of green hydrogen energy production technology[M]// Lecture notes in electrical engineering. Singapore: Springer Nature Singapore, 2023: 607-620. |
[45] |
王艺强, 刘录强, 张志成, 等. 化学储氢介质实现“西氢东送”的可行性研究[J]. 储能科学与技术, 2024, 13(3): 1050-1058.
DOI |
Wang Y Q, Liu L Q, Zhang Z C, et al. Feasibility of “West-to-East Hydrogen Transmission” through chemical hydrogen storage media[J]. Energy Storage Science and Technology, 2024, 13(3): 1050-1058. (in Chinese) | |
[46] | “西氢东送”管道纳入国家规划[J]. 焊管, 2023, 46(4): 59. |
The “West-to-East Hydrogen Transmission” pipeline is included in the national planning[J]. Welded Pipe and Tube, 2023, 46(4): 59. (in Chinese) |
[1] | 鲍春竹, 于海峰, 高华玲, 向中华. 中国氢能学科人才培养现状与展望[J]. 前瞻科技, 2024, 3(4): 111-120. |
[2] | 孟翔宇, 邬新国, 顾阿伦, 曾静, 陈铭韵, 刘滨, 周剑, 毛宗强. 国际氢能发展战略及对中国的启示[J]. 前瞻科技, 2024, 3(4): 121-133. |
[3] | 陈文淼, 凌文. 中国氢能交通发展关键问题与对策建议[J]. 前瞻科技, 2024, 3(4): 58-68. |
[4] | 张嘉欣, 姜雅宁, 孔祥领, 姚晨奕, 巴清心, 李雪芳. 氢安全风险评价技术发展现状与展望[J]. 前瞻科技, 2024, 3(4): 91-104. |
[5] | 马林聪, 鲍威. 中国氢能产业标准化现状与趋势[J]. 前瞻科技, 2024, 3(4): 105-110. |
[6] | 李玉星, 刘翠伟, 彭浩平, 韩辉, 朱建鲁, 宋光春, 王财林. 氢能运输方式与技术发展现状及挑战[J]. 前瞻科技, 2024, 3(2): 81-93. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京公网安备 11010802038735号