[1] |
Wark D Q, Popham R W. Tiros I observations of ice in the Gulf of St. Lawrence[J]. Monthly Weather Review, 1960, 88(5): 182-186.
DOI
URL
|
[2] |
Chen Z, Chi Z, Zinglersen K B, et al. A new image mosaic of Greenland using Landsat-8 OLI images[J]. Science Bulletin, 2020, 65(7): 522-524.
DOI
URL
|
[3] |
Scambos T A, Haran T M, Fahnestock M A, et al. MODIS-based Mosaic of Antarctica (MOA) data sets: Continent-wide surface morphology and snow grain size[J]. Remote Sensing of Environment, 2007, 111(2-3): 242-257.
DOI
URL
|
[4] |
Kaula WLIM. The terrestrial environment: Solid earth and ocean physics[R]. Williamstown: NASA, 1970: CR-1579.
|
[5] |
Kwok R. Arctic sea ice thickness, volume, and multiyear ice coverage: Losses and coupled variability (1958-2018)[J]. Environmental Research Letters, 2018, doi: 10.1088/1748-9326/aae3ec.
DOI
|
[6] |
Zwally H J, Li J, Robbins J W, et al. Mass gains of the Antarctic ice sheet exceed losses[J]. Journal of Glaciology, 2015, 61(230): 1019-1036.
DOI
URL
|
[7] |
Parkinson C L, Cavalieri D J. Antarctic sea ice variability and trends, 1979-2010[J]. Cryosphere, 2012, 6(4): 871-880.
DOI
URL
|
[8] |
Long D G. Polar applications of spaceborne scatterometers[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(5): 2307-2320.
DOI
URL
|
[9] |
Rignot E, Mouginot J. Ice flow in Greenland for the International Polar Year 2008-2009[J]. Geophysical Research Letters, 2012, doi: 10.1029/2012GL051634.
DOI
|
[10] |
Liu Y, Moore J C, Cheng X, et al. Ocean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelves[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(11): 3263-3268.
|
[11] |
Jezek K C, Farness K, Carande R, et al. RADARSAT 1 synthetic aperture radar observations of Antarctica: Modified Antarctic mapping mission, 2000[J]. Radio Science, 2003, 38(4): 8067-8073.
|
[12] |
Maass N, Kaleschke L, Tian-Kunze X, et al. Snow thickness retrieval over thick Arctic sea ice using SMOS satellite data[J]. Cryosphere, 2013, 7(6): 1971-1989.
DOI
URL
|
[13] |
Morlighem M, Williams C N, Rignot E, et al. BedMachine v3: Complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation[J]. Geophysical Research Letters, 2017, 44(21): 11051-11061.
DOI
PMID
|
[14] |
MacFerrin M, Machguth H, van As D, et al. Rapid expansion of Greenland,s low-permeability ice slabs[J]. Nature, 2019, 573(7774): 403-407.
DOI
URL
|
[15] |
刘建强, 安文韬, 梁超, 等. 高分三号卫星在应急监测中的应用[J]. 卫星应用, 2021(9): 33-40.
|
[16] |
曾韬, 石立坚, 刘建强, 等. 高分三号卫星在极地冰区导航中的应用评价[J]. 遥感信息, 2018, 33(6): 20-25.
|
[17] |
郑敏薇, 李晓明, 任永政. 高分3号星载合成孔径雷达极地海冰自动检测方法研究[J]. 海洋学报, 2018, 40(9): 113-124.
|
[18] |
Zhang T, Yang Y, Shokr M, et al. Deep learning based sea ice classification with Gaofen-3 fully polarimetric SAR data[J]. Remote Sensing, 2021, doi: 10.3390/rs13081452.
DOI
|
[19] |
He L, He X, Hui F, et al. Investigation of polarimetric decomposition for Arctic summer sea ice classification using Gaofen-3 fully polarimetric SAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 3904-3915.
DOI
URL
|
[20] |
张飞成, 韦冬妮, 张冰花, 等. 基于雷达高度计的辽东湾海冰外缘线提取及其变动规律[J]. 大连海洋大学学报, 2021, 36(5): 826-832.
|
[21] |
张晰, 张杰, 孟俊敏. Landsat-8与GF-1卫星渤海海冰探测能力对比研究[J]. 海洋科学, 2015, 39(2): 50-56.
|
[22] |
武晋雯, 孙龙彧, 冯锐, 等. 实测光谱和欧氏距离在GF2卫星海冰提取中的应用[J]. 传感技术学报, 2018, 31(10): 1598-1603.
|
[23] |
Wang R, Huang D, Zhang X, et al. Combined pattern matching and feature tracking for Bohai Sea ice drift detection using Gaofen-4 imagery[J]. International Journal of Remote Sensing, 2020, 41(19): 7486-7508.
DOI
URL
|
[24] |
杜骏豪. 中国航天发展史(四)——风云系列气象卫星[J]. 百科探秘(航空航天), 2022(增刊1): 12-17.
|
[25] |
武胜利, 刘健. 长序列北极海冰覆盖数据集对比分析[J]. 海洋学报, 2018, 40(11): 64-72.
|
[26] |
王晓雨, 管磊, 李乐乐. FY-3B/MWRI和Aqua/AMSR-E海冰密集度比较及印证[J]. 遥感学报, 2018, 22(5): 723-736.
|
[27] |
Zhao X, Chen Y, Kern S, et al. Sea ice concentration derived from FY-3D MWRI and its accuracy assessment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, doi: 10.1109/TGRS.2021.3063272.
DOI
|
[28] |
Su J, Hao H, Liang H. Retrieval of Arctic sea ice surface melt onset in 2016 from Fy-3b/Mwri Data[C]// IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2020: 3012-3015.
|
[29] |
央视网. 海洋一号C卫星: 南极地理区域制图的利器[EB/OL]. [2022-06-29]. http://m.news.cctv.com/2020/06/16/ARTIlL3SbYSKVYohE99LthTW200616.shtml?tdsourcetag=s_pcqq_aiomsg.
|
[30] |
刘建强, 曾韬, 叶小敏, 等. HY-1C/D卫星对南极布伦特冰架冰裂缝变化与断裂过程的监测[J]. 海洋学报, 2021, 43(7): 205-206.
|
[31] |
Shi L, Li M, Zhao C, et al. Sea ice extent retrieval with HY-2A scatterometer data and its assessment[J]. Acta Oceanologica Sinica, 2017, 36(8): 76-83.
DOI
URL
|
[32] |
Zou J, Zeng T, Guo M, et al. The study on an Antarctic sea ice identification algorithm of the HY-2A microwave scatterometer data[J]. Acta Oceanologica Sinica, 2016, 35(9): 74-79.
|
[33] |
赵朝方, 徐锐, 赵可. 基于HY-2A/SCAT数据极地海冰检测方法研究[J]. 中国海洋大学学报(自然科学版), 2019, 49(10): 140-149.
|
[34] |
Shi L J, Lu P, Cheng B, et al. An assessment of arctic sea ice concentration retrieval based on “HY-2” scanning radiometer data using field observations during CHINARE-2012 and other satellite instruments[J]. Acta Oceanologica Sinica, 2015, 34(3): 42-50.
|
[35] |
石立坚, 王其茂, 邹斌, 等. 利用海洋(HY-2)卫星微波辐射计数据反演北极区域海冰密集度[J]. 极地研究, 2014, 26(4): 410-417.
|
[36] |
张翔, 王振占, 谌华. 一种利用HY-2卫星扫描微波辐射计数据反演极地海冰密集度的算法[J]. 遥感技术与应用, 2012, 27(6): 912-918.
|
[37] |
朱艺洵, 张晰, 孟俊敏. 基于HY-2B波形特征的北极海冰分类算法[J]. 海洋技术学报, 2021, 40(1): 17-27.
|
[38] |
王利亚, 何宜军, 张彪, 等. HY-2卫星扫描微波辐射计数据反演北极海冰漂移速度[J]. 海洋学报, 2017, 39(9): 110-120.
|
[39] |
Liu S, Tong X, Wu C, et al. Blowing snow detection and speed estimation in Antarctica using ZY-3 multi-view satellite images[C]// Fall Meeting 2016. American Geophysical Union, 2016: C23B-0755.
|
[40] |
Li R, Xiao H, Liu S, et al. A systematic study of the fracturing of Ronne-Filchner Ice Shelf, Antarctica, using multisource satellite data from 2001 to 2016[J]. The Cryosphere Discussions, 2017, doi: 10.5194/tc-2017-178.
DOI
|
[41] |
Zhang Y, Chi Z, Hui F, et al. Accuracy evaluation on geolocation of the Chinese first polar microsatellite (ice pathfinder) imagery[J]. Remote Sensing, 2021, doi: 10.3390/rs13214278.
DOI
|
[42] |
Li T, Liu Y, Cheng X. Recent and imminent calving events do little to impair Amery ice shelf,s stability[J]. Acta Oceanologica Sinica, 2020, 39(5): 168-170.
DOI
URL
|
[43] |
Cui X, Greenbaum J S, Lang S, et al. The scientific operations of Snow Eagle 601 in Antarctica in the past five austral seasons[J]. Remote Sensing, 2020, doi: 10.3390/rs12182994.
DOI
|
[44] |
Yang J, Guo J, Greenbaum J S, et al. Bathymetry beneath the Amery Ice Shelf, East Antarctica, revealed by airborne gravity[J]. Geophysical Research Letters, 2021, doi: 10.1029/2021GL096215.
DOI
|
[45] |
Cui X, Jeofry H, Greenbaum J S, et al. Bed topography of Princess Elizabeth Land in East Antarctica[J]. Earth System Science Data, 2020, 12(4): 2765-2774.
DOI
URL
|
[46] |
Li T, Zhang B, Cheng X, et al. Leveraging the UAV to support Chinese Antarctic expeditions: A new perspective[J]. Advances in Polar Science, 2021, 32(1): 67-74.
|
[47] |
雷旭升, 王挺, 梁建宏, 等. 极地科考小型无人飞行器[J]. 北京航空航天大学学报, 2009, 35(3): 267-271.
|
[48] |
李腾, 张宝钢, 程晓, 等. 无人机在南极科学研究的应用: 进展与展望[J]. 武汉大学学报(信息科学版), 2022, 47(5): 651-664.
|
[49] |
Li T, Zhang B, Cheng X, et al. Resolving fine-scale surface features on polar sea ice: A first assessment of UAS photogrammetry without ground control[J]. Remote Sensing, 2019, doi: 10.3390/rs11070784.
DOI
|
[50] |
张宝钢, 赵剑, 马驰, 等. 基于无人机遥感技术的南极冰川表面冰坑监测[J]. 北京师范大学学报(自然科学版), 2019, 55(1): 19-24.
|
[51] |
Chen X, Chen J, Cheng X, et al. Retreating shorelines as an emerging threat to Adelie penguins on inexpressible island[J]. Remote Sensing, 2021, doi: 10.3390/rs13224718.
DOI
|
[52] |
冀明, 张宝钢, 张媛媛, 等. 南极企鹅数量识别及变化趋势分析——基于无人机航拍的高分辨率影像[J]. 北京师范大学学报(自然科学版), 2019, 55(1): 25-35.
|
[53] |
王明锋, 苏洁, 李涛, 等. 基于无人机观测的北极冰面融池及冰面粗糙度信息提取方法研究[J]. 极地研究, 2017, 29(4): 436-445.
|