Science and Technology Foresight ›› 2024, Vol. 3 ›› Issue (1): 86-99.DOI: 10.3981/j.issn.2097-0781.2024.01.007
• Review and Commentary • Previous Articles Next Articles
QIU Jiawen1,2(), CUI Zhihe2,†(
), HE Yanchun2, WANG Jin2, HUO Lixia2, MA Dongtao2
Received:
2023-12-29
Revised:
2024-01-23
Online:
2024-03-20
Published:
2024-03-27
Contact:
†
邱家稳1,2(), 崔致和2,†(
), 何延春2, 王琎2, 霍丽霞2, 马动涛2
通讯作者:
†
作者简介:
邱家稳,研究员,博士研究生导师。国际宇航科学院院士。中国空间技术研究院某型号卫星总指挥。主要从事真空技术、表面工程和航天器研制工作。电子信箱:13911816829@139.com。基金资助:
QIU Jiawen, CUI Zhihe, HE Yanchun, WANG Jin, HUO Lixia, MA Dongtao. Prospect and Feasibility of Lunar and Martian Lava Tube Sealing Technology[J]. Science and Technology Foresight, 2024, 3(1): 86-99.
邱家稳, 崔致和, 何延春, 王琎, 霍丽霞, 马动涛. 月球及火星熔洞密封技术发展及其方案可行性研究[J]. 前瞻科技, 2024, 3(1): 86-99.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.qianzhankeji.cn/EN/10.3981/j.issn.2097-0781.2024.01.007
涂装技术 | 原材料性状 | 存在的问题 | 可行性 |
---|---|---|---|
气体压力喷涂 | 悬浊液 | 黏度受高低温影响大; 真空或低气压下稀释剂挥发剧烈 | 真空或高低温下实施难度大,可行性差 |
高压无气喷涂 | |||
(真空)静电喷涂 | 悬浊液 | 同上 | 同上 |
固态粉体 | 聚合物粉低温下不易沉积与成膜; 涂层需加热固化 | 需载气供应设备、加热设备等,载气消散速率高; 高压静电发生器在月面工作机制不清,可行性差 | |
火焰喷涂 | 固态粉体 | 需要燃气与助燃气产生火焰; 涂层需加热固化 | 需燃气与助燃气供应设备、加热设备等; 可行性较差 |
(真空)冷喷涂 | 固态粉体 | 粉体输送需要惰性载气; 喷枪覆盖面积较小 | 需载气供应设备; 粉体在高低温、月面岩石基体表面的沉积控制有待研究,具有一定可行性 |
(真空)等离子体喷涂 | 固态粉体 | 粉体输送需要惰性载气(或燃气与助燃气); 电源功耗非常高; 喷枪覆盖面积较小 | 需粉体输送载气(或燃气与助燃气)供应设备、高功率供电设备; 粉体在高低温环境中的沉积控制,燃气与助燃气在月面的燃烧行为,可操作性较低 |
(真空)电弧喷涂 | |||
爆炸喷涂 |
Table 1 Comparison of common painting techniques implemented in lunar high vacuum and other environments
涂装技术 | 原材料性状 | 存在的问题 | 可行性 |
---|---|---|---|
气体压力喷涂 | 悬浊液 | 黏度受高低温影响大; 真空或低气压下稀释剂挥发剧烈 | 真空或高低温下实施难度大,可行性差 |
高压无气喷涂 | |||
(真空)静电喷涂 | 悬浊液 | 同上 | 同上 |
固态粉体 | 聚合物粉低温下不易沉积与成膜; 涂层需加热固化 | 需载气供应设备、加热设备等,载气消散速率高; 高压静电发生器在月面工作机制不清,可行性差 | |
火焰喷涂 | 固态粉体 | 需要燃气与助燃气产生火焰; 涂层需加热固化 | 需燃气与助燃气供应设备、加热设备等; 可行性较差 |
(真空)冷喷涂 | 固态粉体 | 粉体输送需要惰性载气; 喷枪覆盖面积较小 | 需载气供应设备; 粉体在高低温、月面岩石基体表面的沉积控制有待研究,具有一定可行性 |
(真空)等离子体喷涂 | 固态粉体 | 粉体输送需要惰性载气(或燃气与助燃气); 电源功耗非常高; 喷枪覆盖面积较小 | 需粉体输送载气(或燃气与助燃气)供应设备、高功率供电设备; 粉体在高低温环境中的沉积控制,燃气与助燃气在月面的燃烧行为,可操作性较低 |
(真空)电弧喷涂 | |||
爆炸喷涂 |
[1] | 付毅飞. 中国深空探测在规划这些大事[N]. 科技日报, 2023-04-26(4). |
Fu Y F. China’s deep space exploration is planning these major events[N]. Science and Technology Daily, 2023-04-26(4). (in Chinese) | |
[2] | 达道安, 邱家稳. 真空设计手册[M]. 3版. 北京: 国防工业出版社, 2004: 459-588. |
Da D A, Qiu J W. Vacuum design handbook[M]. 3rd edition. Beijing: National Defense Industry Press, 2004: 459-588. (in Chinese) | |
[3] |
欧阳自远. 我国月球探测的总体科学目标与发展战略[J]. 地球科学进展, 2004, 19(3): 351-358.
DOI |
Ouyang Z Y. Scientific objectives of Chinese lunar exploration project and development strategy[J]. Advances in Earth Science, 2004, 19(3): 351-358. (in Chinese) | |
[4] | 叶培建, 彭兢. 深空探测与我国深空探测展望[J]. 中国工程科学, 2006, 8(10): 13-18. |
Ye P J, Peng J. Deep space exploration and its prospect in China[J]. Strategic Study of CAE, 2006, 8(10): 13-18. (in Chinese) | |
[5] |
王春勇, 李昊磷, 孙亮, 等. 月球样品真空密封结构适应性试验研究[J]. 润滑与密封, 2017, 42(6): 88-91.
DOI |
Wang C Y, Li H L, Sun L, et al. Experimental investigation on adaptability of lunar samples vacuum sealing structure[J]. Lubrication Engineering, 2017, 42(6): 88-91. (in Chinese)
DOI |
|
[6] | Wu X J, Wang K C, Yang Z R, et al. Study on preparation and characterization of in-Ag solders[J]. Precious Metals, 2019, 40(1): 57-62. |
[7] | 付朝晖, 许旻, 杜永刚, 等. 极高真空环境下软金属刀口密封研究[J]. 真空科学与技术学报, 2014, 34(3): 221-224. |
Fu Z H, Xu M, Du Y G, et al. Novel ultra high vacuum sealing technique with soft metal knife edge for space crafts[J]. Chinese Journal of Vacuum Science and Technology, 2014, 34(3): 221-224. (in Chinese) | |
[8] | 谢更新. 人类地外空间受控生态系统构建技术研究[M]. 重庆: 重庆大学出版社, 2023: 205-206. |
Xie G X. Research of ecosystem constructing techniques on outer space bodies[M]. Chongqing: Chongqing University Press, 2023: 205-206. (in Chinese) | |
[9] |
Tani A, Okuma T, Goto E, et al. Ground performance of air conditioning and water recycle system for a space plant box[J]. Advances in Space Research, 2001, 27(9): 1557-1562.
PMID |
[10] | Abeles F B, Morgan P W, Jr Saltweit M E. Ethylene Inplant Biology[M]. 2nd ed. San Diege: Academic Press Inc, 1992. |
[11] | 谭萍. 国际空间站的现状与未来[J]. 控制工程, 2002(5): 64-65. |
Tan P. Status and future of ISS[J]. Control Engineering, 2002(5): 64-65. (in Chinese) | |
[12] | 李学东, 谢圆, 朱光辰. 我国空间站出舱活动通用设计和实施技术[J]. 航天器工程, 2023, 32(2): 1-8. |
Li X D, Xie Y, Zhu G C. General design and implementation technologies of China space station EVA[J]. Spacecraft Engineering, 2023, 32(2): 1-8. (in Chinese) | |
[13] | 曹军, 卜珺珺, 杨晓林, 等. 大型空间站气闸舱气体复用技术研究[J]. 航天器工程, 2013, 22(2): 32-39. |
Cao J, Bu J J, Yang X L, et al. Preliminary study on large-size space station airlock gas recovery technology[J]. Spacecraft Engineering, 2013, 22(2): 32-39. (in Chinese) | |
[14] | 张涛涛, 张琳, 夏祥东, 等. 航天器气闸舱方形货舱门与门框结构一体化设计[J]. 航天器工程, 2020, 29(4): 74-79. |
Zhang T T, Zhang L, Xia X D, et al. Integrated design and analysis of cargo square door and frame structures of spacecraft airlock module[J]. Spacecraft Engineering, 2020, 29(4): 74-79. (in Chinese) | |
[15] | 于春锐, 乔凯, 刘东旭. 平流层飞艇总体设计的基础问题[J]. 空间科学学报, 2022, 42(5): 927-932. |
Yu C R, Qiao K, Liu D X. Basic problems research in stratospheric airship design[J]. Chinese Journal of Space Science, 2022, 42(5): 927-932. (in Chinese)
DOI URL |
|
[16] | 宁泽坤. 飞艇蒙皮材料撕裂行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. |
Ning Z K. Study on tearing behavior of airship skin material[D]. Harbin: Harbin Institute of Technology, 2021. (in Chinese) | |
[17] | 肖畅. 平流层飞艇碳纤维复合材料刚性骨架的管件抗压性能和连接方法研究[J]. 复合材料科学与工程, 2020(6): 89-94. |
Xiao C. A connection method of CFRP pipes for rigid struture of a stratospheric airship[J]. Composites Science and Engineering, 2020(6): 89-94. (in Chinese) | |
[18] | Khoury G A, Gillett J D. Airship Technology[M]. Cambridge: Cambridge University Press, 1999. |
[19] | 陈永霖. 平流层飞艇蒙皮材料撕裂性能研究[D]. 上海: 上海交通大学, 2016. |
Chen Y L. Study on tering property of an envelope material for airships[D]. Shanghai: Shanghai Jiao Tong University, 2016. (in Chinese) | |
[20] | 赵臻璐, 王小群, 杜善义. 平流层飞艇囊体气密层材料及氦气透过聚合物研究现状[J]. 航空学报, 2009, 30(9): 1761-1768. |
Zhao Z L, Wang X Q, Du S Y. Review of research on gas retention layer material for stratospheric airship envelope and helium permeation in polymers[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(9): 1761-1768. (in Chinese) | |
[21] | 王维相, 翁亚栋. 系留气球和飞艇的应用与发展[J]. 世界橡胶工业, 2007(34): 44-49. |
Wang W X, Weng YD. Application and trends for mooring balloon and airship[J]. World Rubber Industry, 2007(34): 44-49. (in Chinese) | |
[22] | Li W Y, Cao C C, Yin S. Solid-state cold spraying of Ti and its alloys: A literature review[J]. Progress in Materials Science, 2020, 110, doi: 10.1016/j.pmatsci.2019.100633. |
[23] | 黄春杰, 殷硕, 李文亚, 等. 冷喷涂技术及其系统的研究现状与展望[J]. 表面技术, 2021, 50(7): 1-23. |
Huang C J, Yin S, Li W Y, et al. Cold spray technology and its system: Research status and prospect[J]. Surface Technology, 2021, 50(7): 1-23. (in Chinese) | |
[24] | 马凯, 李成新. 真空冷喷涂技术及其在功能器件中的应用[J]. 中国表面工程, 2020, 33(4): 26-50. |
Ma K, Li C X. Vacuum cold spray technology and its application in functional devices[J]. China Surface Engineering, 2020, 33(4): 26-50. (in Chinese) | |
[25] | 崔致和, 曹军. 载人航天器舱门快速检漏仪的可靠性试验与评估方法[J]. 中国空间科学技术, 2012, 32(3): 57-63. |
Cui Z H, Cao J. Reliability test and evaluating methods of port quick leak detector for manned spacecraft[J]. Chinese Space Science and Technology, 2012, 32(3): 57-63. (in Chinese) | |
[26] | Liu X M. Mechanical response of composite materials prepared with polyurethane elastomers and polyvinyl chloride films[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 146, doi: 10.1016/j.jmbbm.2023.106006. |
[27] | Mahankar P S, Dhoble A S, Prabhu R. Experimental investigation of polyurethane seal failure used in hydraulic system[J]. Engineering Failure Analysis, 2023, 150, doi: 10.1016/j.engfailanal.2023.107319. |
[28] |
Somarathna H M C C, Raman S N, Mohotti D, et al. The use of polyurethane for structural and infrastructural engineering applications: A state-of-the-art review[J]. Construction and Building Materials, 2018, 190: 995-1014.
DOI URL |
[29] | Elsmore M T, de Focatiis D S A. Combined roles of temperature and humidity on cure of a silicone elastomer[J]. Polymer Testing, 2021, 93, doi: 10.1016/j.polymertesting.2020.106967. |
[30] | 辛松民, 王一璐. 有机硅合成工艺及产品应用[M]. 北京: 化学工业出版社, 2008: 614-648. |
Xin S M, Wang Y L. Silicone synthesis process and product application[M]. Beijing: Chemical Industry Press, 2008: 614-648. (in Chinese) | |
[31] |
Mandikos M N. Polyvinyl siloxane impression materials: An update on clinical use[J]. Australian Dental Journal, 1998, 43(6): 428-434.
DOI PMID |
[32] |
郭国吉, 陈彩英, 王向明, 等. 聚脲弹性体防护材料的研究进展[J]. 中国表面工程, 2021, 34(6): 1-20.
DOI |
Guo G J, Chen C Y, Wang X M, et al. Research progress of polyurea elastomer protective materials[J]. China Surface Engineering, 2021, 34(6): 1-20. (in Chinese)
DOI |
|
[33] |
Assadi H, Kreye H, Gärtner F, et al. Cold spraying-A materials perspective[J]. Acta Materialia, 2016, 116: 382-407.
DOI URL |
[1] | XUE Xuanyi, HUA Jianmin, XIAO Chang, HUANG Lepeng. Prospects for Intelligent Construction Technology for Lunar Base in Extreme Environments [J]. Science and Technology Foresight, 2024, 3(1): 109-115. |
[2] | ZHANG Jie, ZHOU Feng, GUO Shengjie, WANG Hua, YAN Fulong. Research Status and Development Trends in Lunar Base Communication and Navigation Technology [J]. Science and Technology Foresight, 2024, 3(1): 116-125. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京公网安备 11010802038735号