Science and Technology Foresight ›› 2024, Vol. 3 ›› Issue (1): 126-136.DOI: 10.3981/j.issn.2097-0781.2024.01.011
• Review and Commentary • Previous Articles Next Articles
YAN Qiong(), ZHANG Jinlei, FENG Ke, LI Huanyu, LI Yue, CHENG Xiyu(
)
Received:
2023-10-11
Revised:
2024-01-25
Online:
2024-03-20
Published:
2024-03-27
Contact:
†
通讯作者:
†
作者简介:
晏琼,副教授。主要从事环境生物技术与生物材料研究。主持和参与军委科技委国防科技创新特区项目、国家自然科学基金、装备预研教育部联合基金、北京市自然科学基金等项目20余项。发表论文30余篇,完成国防科技报告2份等。电子信箱:qyan@bjtu.edu.cn。基金资助:
YAN Qiong, ZHANG Jinlei, FENG Ke, LI Huanyu, LI Yue, CHENG Xiyu. Development and Suggestions on Key Biotechnology of Extraterrestrial Recyclable Life Support Systems[J]. Science and Technology Foresight, 2024, 3(1): 126-136.
晏琼, 张金磊, 冯可, 李环宇, 李玥, 成喜雨. 地外可循环生命保障系统关键生物技术发展与建议[J]. 前瞻科技, 2024, 3(1): 126-136.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.qianzhankeji.cn/EN/10.3981/j.issn.2097-0781.2024.01.011
系统 | 再生保障技术 | 评价 |
---|---|---|
不可再生生保系统 | 固废处理:返回后丢弃; 废液处理:返回后丢弃; 气体再生:随飞船携带不可再生 | 水、气、食物均不可再生。废物不能再利用,只适合短期近地空间探索 |
物理化学再生生保系统 | 固废处理:返回后丢弃; 废液处理:过滤、吸附等物化法净化; 气体再生:电解法再生氧气 | 水、气能够部分再生,但水资源会被逐渐消耗。食物完全不可再生,能满足长时间近地空间活动需要 |
生物再生生保系统 | 固废处理:堆肥或焚烧矿化; 废液处理:植物、微生物净化废水; 气体再生:植物、微生物再生净化气体 | 水、气体、食物能够再生,系统内所有元素都会参与到内部的物质循环,来满足人类长期太空生存需要 |
Table 1 Comparison and analysis of existing life support systems
系统 | 再生保障技术 | 评价 |
---|---|---|
不可再生生保系统 | 固废处理:返回后丢弃; 废液处理:返回后丢弃; 气体再生:随飞船携带不可再生 | 水、气、食物均不可再生。废物不能再利用,只适合短期近地空间探索 |
物理化学再生生保系统 | 固废处理:返回后丢弃; 废液处理:过滤、吸附等物化法净化; 气体再生:电解法再生氧气 | 水、气能够部分再生,但水资源会被逐渐消耗。食物完全不可再生,能满足长时间近地空间活动需要 |
生物再生生保系统 | 固废处理:堆肥或焚烧矿化; 废液处理:植物、微生物净化废水; 气体再生:植物、微生物再生净化气体 | 水、气体、食物能够再生,系统内所有元素都会参与到内部的物质循环,来满足人类长期太空生存需要 |
[1] |
于登云, 马继楠. 中国深空探测进展与展望[J]. 前瞻科技, 2022, 1(1): 17-27.
DOI |
Yu D Y, Ma J N. Progress and prospect of deep space exploration in China[J]. Science and Technology Foresight, 2022, 1(1): 17-27. (in Chinese)
DOI |
|
[2] | 吴伟仁, 于登云, 王赤, 等. 月球极区探测的主要科学与技术问题研究[J]. 深空探测学报, 2020, 7(3): 223-231, 240. |
Wu W R, Yu D Y, Wang C, et al. Research on the main scientific and technological issues on lunar polar exploration[J]. Journal of Deep Space Exploration, 2020, 7(3): 223-231, 240. (in Chinese)
DOI |
|
[3] | 刘向阳, 高峰, 邓一兵, 等. 中国空间站再生生保系统的设计与实现[J]. 中国科学: 技术科学, 2022, 52(9): 1375-1392. |
Liu X Y, Gao F, Deng Y B, et al. Design and implementation of regenerative life support system in the China space station[J]. Scientia Sinica (Technologica), 2022, 52(9): 1375-1392. (in Chinese) | |
[4] |
Averner M M, Moore B, Bartholomew I, et al. Atmosphere behavior in gas-closed mouse-algal systems: An experimental and modelling study[J]. Advances in Space Research, 1984, 4(12): 231-239.
PMID |
[5] |
De Pascale S, Arena C, Aronne G, et al. Biology and crop production in space environments: Challenges and opportunities[J]. Life Sciences in Space Research, 2021, 29: 30-37.
DOI PMID |
[6] |
Brown L, Peick J, Pickett M, et al. Aquatic invertebrate protein sources for long-duration space travel[J]. Life Sciences in Space Research, 2021, 28: 1-10.
DOI PMID |
[7] |
Tikhomirova N A, Trifonov S V, Ushakova S A, et al. Incorporation of mineralized human waste and fish waste as a source of higher plant mineral nutrition in the BTLSS mass exchange[J]. Life Sciences in Space Research, 2019, 20: 53-61.
DOI PMID |
[8] |
Tikhomirov A, Ushakova S, Velichko V, et al. Possible risks for the functioning of cyclic processes in the experimental model of a closed ecosystem[J]. Life Sciences in Space Research, 2022, 33: 33-40.
DOI PMID |
[9] | 艾为党, 郭双生, 董文平, 等. “微藻-小白鼠”二元生态系统气体交换规律研究[J]. 载人航天, 2014, 20(6): 510-516. |
Ai W D, Guo S S, Dong W P, et al. Research on gas exchange in the microalgae-mice system[J]. Manned Spaceflight, 2014, 20(6): 510-516. (in Chinese) | |
[10] | 杨有泉, 邓素芳, 陈敏. CELSS系统中两种叶用蔬菜与红萍光合供O2效应对比研究[J]. 福建热作科技, 2016, 41(4): 16-21. |
Yang Y Q, Deng S F, Chen M. Comparative study on the effect of photosynthetic O2 feeding by two leafy vegetables and rhizome in CELSS system[J]. Fujian Hot Work Science and Technology, 2016, 41(4): 16-21. (in Chinese) | |
[11] |
Zhang L C, Li T, Ai W D, et al. Water management in a controlled ecological life support system during a 4-person-180-day integrated experiment: Configuration and performance[J]. Science of the Total Environment, 2019, 651: 2080-2086.
DOI URL |
[12] | Zhao T, Liu G H, Liu D L, et al. Water recycle system in an artificial closed ecosystem-Lunar Palace 1: Treatment performance and microbial evolution[J]. Science of the Total Environment, 2022, 806, doi: 10.1016/j.scitotenv.2021.151370. |
[13] | 张良长, 李婷, 余青霓, 等. 4人180天集成试验环控生保系统设计及运行概况[J]. 航天医学与医学工程, 2018, 31(2): 273-281. |
Zhang L C, Li T, Yu Q N, et al. Design and operation overview of 4-person 180-day integrated experiment in controlled ecological life support system[J]. Space Medicine & Medical Engineering, 2018, 31(2): 273-281. (in Chinese) | |
[14] |
Liu H, Yao Z K, Fu Y M, et al. Review of research into bioregenerative life support system(s) which can support humans living in space[J]. Life Sciences in Space Research, 2021, 31: 113-120.
DOI PMID |
[15] |
Dong C, Fu Y M, Xie B Z, et al. Element cycling and energy flux responses in ecosystem simulations conducted at the Chinese Lunar Palace-1[J]. Astrobiology, 2017, 17(1): 78-86.
DOI PMID |
[16] | 沈韫赜, 郭双生, 艾为党, 等. 红蓝LED光照强度对密闭生态系统中生菜生长状况及光合速率的影响[J]. 载人航天, 2014, 20(3): 273-278. |
Shen Y Z, Guo S S, Ai W D, et al. Effects of the red and blue LED light intensity on lettuce growthand photosynthetic ratein a closed system[J]. Manned Spaceflight, 2014, 20(3): 273-278. (in Chinese) | |
[17] | El-Nakhel C, Giordano M, Pannico A, et al. Cultivar-specific performance and qualitative descriptors for butterhead salanova lettuce produced in closed soilless cultivation as a candidate salad crop for human life support in space[J]. Life, 2019, 9(3), doi: 10.3390/life9030061. |
[18] | Kim H H, Wheeler R M, Sager J C, et al. Light-emitting diodes as an illumination source for plants: A review of research at Kennedy Space Center[J]. Habitation, 2005, 10(2): 71-78. |
[19] | 晏琼, 刘晓宇, 虞昊安, 等. 植物无土栽培技术研究进展[J]. 中国农业大学学报, 2022, 27(5): 1-11. |
Yan Q, Liu X Y, Yu H A, et al. Recent advances in plant soilless cultivation[J]. Journal of China Agricultural University, 2022, 27(5): 1-11. (in Chinese) | |
[20] | Ellery A. Supplementing closed ecological life support systems with in-situ resources on the moon[J]. Life, 2021, 11(8), doi: 10.3390/life11080770. |
[21] | Keller R, Goli K, Porter W, et al. Cyanobacteria and algal-based biological life support system (BLSS) and planetary surface atmospheric revitalizing bioreactor brief concept review[J]. Life, 2023, 13(3), doi: 10.3390/life13030816. |
[22] |
Gribovskaya I V, Kudenko Y A, Gitelson J I. Element exchange in a water-and gas-closed biological life support system[J]. Advances in Space Research, 1997, 20(10): 2045-2048.
PMID |
[23] | Henninger D L, Tri T O, Packham N J C. NASA’s advanced life support systems human-rated test facility[J]. Advances in Space research, 1996, 18(1/2): 223-232. |
[24] | 郭双生. 美国长期载人航天生命保障地面模拟装置——“BPC”的研究历史、现状与展望[J]. 大自然探索, 1996(1): 34-40. |
Guo S S. A American ground simulator of life-support system for long-term manned space flight-the history, present and prospect of BPC[J]. Discovery of Nature, 1996(1): 34-40. (in Chinese) | |
[25] | 郭双生, 武艳萍. 空间植物栽培技术研究新进展[J]. 航天医学与医学工程, 2016, 29(4): 301-306. |
Guo S S, Wu Y P. Research progress in space plant growing technique[J]. Space Medicine & Medical Engineering, 2016, 29(4): 301-306. (in Chinese) | |
[26] | 谢更新. 月球上第一片绿叶是怎么长出来的[J]. 风流一代, 2023(2): 50-51. |
Xie G X. How did the first green leaf grow on the moon[J]. Merry Generation, 2023(2): 50-51. (in Chinese) | |
[27] | “太空菜园”产出新鲜蔬菜[J]. 饮料工业, 2023, 26(6): 75. |
“Space garden” produces fresh vegetables[J]. Beverage Industry, 2019, 26(6): 75. (in Chinese) | |
[28] | 何春芳. 航天食品加热器设计研究[D]. 北京: 北京理工大学, 2015. |
He C F. Synthesis and design on space food heater[D]. Beijing: Beijing Institute of Technology, 2015. (in Chinese) | |
[29] |
Jiang J H, Zhang M, Bhandari B, et al. Current processing and packing technology for space foods: A review[J]. Critical Reviews in Food Science and Nutrition, 2020, 60(21): 3573-3588.
DOI |
[30] |
Li L Y, Xie B Z, Dong C, et al. Rearing Tenebrio molitor L. (Coleptera: Tenebrionidae) in the “Lunar Palace 1” during a 105-day multi-crew closed integrative BLSS experiment[J]. Life Sciences in Space Research, 2015, 7: 9-14.
DOI URL |
[31] | Hentges D L. Safety analysis and hazard control during food processing and storage in the BIO-Plex interconnecting transfer tunnel[J]. Life Support & Biosphere Science: International Journal of Earth Space, 2000, 7(2): 187-192. |
[32] | Menezes A A, Cumbers J, Hogan J A, et al. Towards synthetic biological approaches to resource utilization on space missions[J]. Journal of the Royal Society Interface, 2015, 12, doi: 10.1098/rsif.2014.0715. |
[33] | 陆月盈, 付玉明, 刘红. 基于图像处理方法的空间站舱室材料表面真菌滋生监测[J]. 载人航天, 2021, 27(2): 190-197. |
Lu Y Y, Fu Y M, Liu H. Monitoring of fungal growth on surface of space station cabin materials based on image processing methods[J]. Manned Spaceflight, 2021, 27(2): 190-197. (in Chinese) | |
[34] | Amalfitano S, Levantesi C, Copetti D, et al. Water and microbial monitoring technologies towards the near future space exploration[J]. Water Research, 2020, 177, doi: 10.1016/j.watres.2020.115787. |
[35] | Urbaniak C, Morrison M D, Thissen J B, et al. Microbial Tracking-2, a metagenomics analysis of bacteria and fungi onboard the international space station[J]. Microbiome, 2022, 10, doi: 10.1186/s40168-022-01293-0. |
[36] |
Ichijo T, Shimazu T, Nasu M S. Microbial monitoring in the international space station and its application on earth[J]. Biological and Pharmaceutical Bulletin, 2020, 43(2): 254-257.
DOI PMID |
[37] | Castro-Wallace S L, Chiu C Y, John K K, et al. Nanopore DNA sequencing and genome assembly on the international space station[J]. Scientific Reports, 2017, 7, doi: 10.1038/s41598-017-18364-0. |
[38] | 辛冰牧, 王珩, 徐冲, 等. 载人航天器环境微生物免培养法检测技术研究进展[J]. 载人航天, 2020, 26(5): 664-670. |
Xin B M, Wang H, Xu C, et al. Research progress of culture-independent monitoring technology for environment microorganisms in manned spacecraft[J]. Manned Spaceflight, 2020, 26(5) : 664-670. (in Chinese) | |
[39] | 韩培, 侯红渠, 樊云龙, 等. LAMP耦合荧光侧向流层析试纸条的空间微生物快速检测技术[J]. 空间科学学报, 2023, 43(2): 302-309. |
Han P, Hou H Q, Fan Y L, et al. Space microbial detection method based on fluorescent LAMP[J]. Chinese Journal of Space Science, 2023, 43(2): 302-309. (in Chinese)
DOI URL |
|
[40] | 姚坤志. 3种盆栽植物对氨气的主动净化[D]. 武汉: 华中农业大学, 2022. |
Yao K Z. Active removal of ammonia through three potted plants[D]. Wuhan: Huazhong Agricultural University, 2022. (in Chinese) | |
[41] | 郭双生, 董文平, 艾为党, 等. 2人30天受控生态生保系统物质流调控技术研究[J]. 载人航天, 2013, 19(5): 67-74. |
Guo S S, Dong W P, Ai W D, et al. Research on material flow regulation technology of 30-day controlled ecological bioprotection system for two people[J]. Manned Spaceflight, 2013, 19(5): 67-74. (in Chinese) | |
[42] | 杨建楼, 孙儒馨, 张兰涛, 等. 载人航天器内菌斑清除装置设计及初步应用验证[J]. 航天器环境工程, 2021, 38(6): 699-706. |
Yang J L, Sun R X, Zhang L T, et al. Design of plaque removal device used in manned spacecraft with preliminary application verification[J]. Spacecraft Environment Engineering, 2021, 38(6): 699-706. (in Chinese) | |
[43] | 杨建楼, 付玉明, 刘红. 载人航天器内腐蚀材料表面原位修护装置设计[J]. 航天器环境工程, 2022, 39(3): 255-261. |
Yang J L, Fu Y M, Liu H. Design of in situ repair device for the microbial corrosion surface material used in manned spacecraft[J]. Spacecraft Environment Engineering, 2022, 39(3): 255-261. (in Chinese) | |
[44] | 郭双生. 我国月球基地受控生态生保系统物质流调控分析研究[J]. 载人航天, 2017, 23(5): 680-687. |
Guo S S. Analytic study on material flow regulation in CELSS of future Chinese lunar base[J]. Manned Spaceflight, 2017, 23(5): 680-687. (in Chinese) | |
[45] |
Bachhav B, de Rossi J, Llanos C D, et al. Cell factory engineering: Challenges and opportunities for synthetic biology applications[J]. Biotechnology and Bioengineering, 2023, 120(9): 2441-2459.
DOI PMID |
[46] | 史硕博, 张翀, 成喜雨, 等. 挑战造物主: 合成生物学使能工具[J]. 合成生物学, 2023, 4(1): 1-4. |
Shi S B, Zhang C, Cheng X Y, et al. Challenging the creator: Enabling tools for synthetic biology[J]. Synthetic Biology Journal, 2023, 4(1): 1-4. (in Chinese) |
[1] | ZHANG Zexu, GAO Feiyu, MEI Hongyuan, MENG Songhe, CHI Haiyi, ZHAO Jialong, WANG Yiyu, YUAN Shuai. Construction Planning and Development Strategy of Scientific Research Bases on the Moon and Mars and Other Celestial Bodies [J]. Science and Technology Foresight, 2024, 3(1): 49-61. |
[2] | YU Dengyun, MA Jinan. Progress and Prospect of Deep Space Exploration in China [J]. Science and Technology Foresight, 2022, 1(1): 17-27. |
[3] | WANG Dayi, LI Jiaxing, DONG Tianshu, GE Dongming. Multi-source Fusion Autonomous Navigation Technologies Based on Spacecraft Observability Theory [J]. Science and Technology Foresight, 2022, 1(1): 146-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京公网安备 11010802038735号