[1] |
熊璐, 杨兴, 卓桂荣, 等. 无人驾驶车辆的运动控制发展现状综述[J]. 机械工程学报, 2020, 56(10): 127-143.
DOI
|
|
Xiong L, Yang X, Zhuo G R, et al. Review on motion control of autonomous vehicles[J]. Journal of Mechanical Engineering, 2020, 56(10): 127-143. (in Chinese)
DOI
|
[2] |
Shimizu H, Emoto K, Kawakami K. Design development of high-performance electric vehicle “eliica”[J]. Journal of the Visualization Society of Japan, 2006, 26(Supp1): 13-19.
|
[3] |
杜志岐, 唐镜. 基于系统工程的装甲车辆总体设计[J]. 兵工学报, 2022, 43(增刊1): 1-10.
|
|
Du Z Q, Tang J. Overall design of armored vehicles based on system engineering[J]. Acta Armamentarii, 2022, 43(Suppl 1): 1-10. (in Chinese)
|
[4] |
易健. 汽车整车设计开发流程优化研究[J]. 汽车测试报告, 2024(15): 11-13.
|
|
Yi J. Research on optimization of vehicle design and development process[J]. Car Test Report, 2024(15): 11-13. (in Chinese)
|
[5] |
邹渊, 孙文景, 张旭东, 等. 智能网联汽车多域电子电气架构技术发展研究[J]. 汽车工程, 2023, 45(6): 895-909.
|
|
Zou Y, Sun W J, Zhang X D, et al. Study on the technology development of multi-domain electrical and electronic architecture for intelligent networked vehicles[J]. Automotive Engineering, 2023, 45(6): 895-909. (in Chinese)
|
[6] |
熊璐, 李聪聪, 卓桂荣, 等. 电子机械制动器构型及控制技术发展现状[J]. 汽车工程, 2023, 45(12): 2187-2199, 2250.
|
|
Xiong L, Li C C, Zhuo G R, et al. Review on electro-mechanical brake structure and control technology[J]. Automotive Engineering, 2023, 45(12): 2187-2199, 2250. (in Chinese)
|
[7] |
张雷, 徐同良, 李嗣阳, 等. 全线控分布式驱动电动汽车底盘协同控制研究综述[J]. 机械工程学报, 2023, 59(20): 261-280.
DOI
|
|
Zhang L, Xu T L, Li S Y, et al. Overview on chassis coordinated control for full X-by-wire distributed drive electric vehicle[J]. Journal of Mechanical Engineering, 2023, 59(20): 261-280. (in Chinese)
|
[8] |
Murata S. Innovation by in-wheel-motor drive unit[J]. Vehicle System Dynamics, 2012, 50(6): 807-830.
|
[9] |
唐术锋, 王国庆, 郭子瑞. 一种可重构移动作战平台对接机构设计与实验[J]. 兵器装备工程学报, 2020, 41(7): 147-151. (in Chinese)
|
|
Tang S F, Wang G Q, Guo Z R. Design and experiment of a re-configurable mobile combat platform docking mechanism[J]. Journal of Ordnance Equipment Engineering, 2020, 41(7): 147-151. (in Chinese)
|
[10] |
王军雷, 王亮亮, 王静. 基于专利视角的滑板底盘技术发展研究[J]. 汽车技术, 2023(12): 54-59.
|
|
Wang J L, Wang L L, Wang J. Research on skateboard chassis technologies based on patent analysis[J]. Automobile Technology, 2023(12): 54-59. (in Chinese)
|
[11] |
李航, 胡尊严, 胡家毅, 等. 新型分布式驱动液氢燃料电池重型商用车设计、分析与验证[J]. 汽车工程, 2022, 44(8): 1183-1198, 1250.
|
|
Li H, Hu Z Y, Hu J Y, et al. Design, analysis and validation of novel distributed drive liquid hydrogen fuel cell heavy commercial vehicles[J]. Automotive Engineering, 2022, 44(8): 1183-1198, 1250. (in Chinese)
|
[12] |
徐向阳, 赵俊玮, 董鹏, 等. 双碳目标下商用车动力传动系统技术特征与展望[J]. 汽车安全与节能学报, 2023, 14(4): 395-412.
|
|
Xu X Y, Zhao J W, Dong P, et al. Technical characteristics and prospects of power transmissions for commercial vehicles under the “Carbon-Peak and Carbon-Neutrality” target[J]. Journal of Automotive Safety and Energy, 2023, 14(4): 395-412. (in Chinese)
|
[13] |
陶永亮, 娄梦妮. 新能源汽车销量促进压铸产业及一体化压铸发展[J]. 铸造设备与工艺, 2022(2): 52-55.
|
|
Tao Y L, Lou M N. Sales of new energy vehicles promote the development of die casting industry and integrated die casting[J]. Foundry Equipment & Technology, 2022(2): 52-55. (in Chinese)
|
[14] |
Kuttenberger A, Eisele S, Lich T, et al. Improved occupant protection through cooperation of active and passive safety systems-combined active and passive safety CAPS[C]// SAE Technical Paper Series. Warrendale: SAE International, 2006, doi:10.4271/2006-01-1144.
|
[15] |
王震坡, 陈辛波, 张雷, 等. 分布式驱动电动汽车关键技术及产业化展望[J]. 科技导报, 2020, 38(8): 99-100.
DOI
|
|
Wang Z P, Chen X B, Zhang L, et al. Key technologies and industrialization prospect of distributed drive electric vehicle[J]. Science & Technology Review, 2020, 38(8): 99-100. (in Chinese)
|
[16] |
雷颖絜, 刘伟, 胡磊. 商用车平台架构开发方法研究[J]. 重型汽车, 2024(5): 7-8.
|
|
Lei Y J, Liu W, Hu L. Research on development method of commercial vehicle platform architecture[J]. Heavy Truck, 2024(5): 7-8. (in Chinese)
|
[17] |
付晓江. 基于柔性定制化的G公司新产品开发流程再造研究[D]. 青岛: 青岛大学, 2022.
|
|
Fu X J. Research on new product development process re-engineering of G company based on flexible customization[D]. Qingdao: Qingdao University, 2022. (in Chinese)
|
[18] |
李军, 周佳, 王利刚, 等. 中国乘用车轻量化水平发展趋势研究[J]. 汽车工程学报, 2021, 11(5): 313-319, 362.
|
|
Li J, Zhou J, Wang L G, et al. Research on development trends of lightweight level of passenger cars in China[J]. Chinese Journal of Automotive Engineering, 2021, 11(5): 313-319, 362. (in Chinese)
|
[19] |
林晨, 魏洪乾, 荆威, 等. 汽车功能安全: 面向敏感指令攻击场景的自主驾驶车辆路径规划风险缓解控制[J]. 机械工程学报, 2024, 60(10): 302-316.
|
|
Lin C, Wei H Q, Jing W, et al. Automobile functional safety: Risk mitigation control of autonomous vehicle path planning for sensitive command attack scenes[J]. China Industrial Economics, 2024, 60(10): 302-316. (in Chinese)
|
[20] |
姜圣. 整车舒适性研究与悬挂系统优化分析[D]. 长沙: 湖南大学, 2010.
|
|
Jiang S. Study on vehicle comfort and optimization analysis of suspension system[D]. Changsha: Hunan University, 2010. (in Chinese)
|
[21] |
邵珠峰, 赵云, 王晨, 等. 新时期我国工业软件产业发展路径研究[J]. 中国工程科学, 2022, 24(2): 86-95.
DOI
|
|
Shao Z F, Zhao Y, Wang C, et al. Development path of China’s industrial software industry in the new era[J]. Strategic Study of CAE, 2022, 24(2): 86-95. (in Chinese)
DOI
|
[22] |
陈娟, 周广明, 李欣桐, 等. 基于MBSE的综合传动装置需求分析[J]. 兵工学报, 2022(增刊1): 11-20.
|
|
Chen J, Zhou G M, Li X T, et al. MBSE-based requirement analysis of transmission system[J]. Acta Armamentarii, 2022(Suppl 1): 11-20. (in Chinese)
|
[23] |
张雷, 赵宪华, 王震坡. 四轮轮毂电机独立驱动电动汽车轨迹跟踪与横摆稳定性协调控制研究[J]. 汽车工程, 2020, 42(11): 1513-1521.
DOI
|
|
Zhang L, Zhao X H, Wang Z P. Study on coordinated control of trajectory tracking and yaw stability for autonomous four-wheel-independent-driving electric vehicles[J]. Automotive Engineering, 2020, 42(11): 1513-1521. (in Chinese)
|