前瞻科技 ›› 2024, Vol. 3 ›› Issue (3): 45-60.DOI: 10.3981/j.issn.2097-0781.2024.03.004
收稿日期:
2024-06-11
修回日期:
2024-07-01
出版日期:
2024-09-20
发布日期:
2024-09-18
通讯作者:
†
作者简介:
常晓丛,副教授。主要从事微纳机器人技术领域的相关研究工作。主持国家自然科学基金青年基金等项目。发表论文27篇,授权发明专利18件。电子信箱:xiaocong@hit.edu.cn。基金资助:
CHANG Xiaocong1,2(), LI Longqiu1,†(
), ZHOU Dekai1,2
Received:
2024-06-11
Revised:
2024-07-01
Online:
2024-09-20
Published:
2024-09-18
Contact:
†
摘要:
游动微纳机器人作为微执行器的重要分支,凭借尺寸小、推重比大、可控性好等特性,能够深入传统机器人无法到达的狭小空间,为生物医学、环境监测、纳米工程等领域带来变革性思路。近年来,随着材料科学、纳米技术和生物技术的不断发展,游动微纳机器人的研究取得了显著进展。然而,游动微纳机器人的研究和应用仍面临着复杂环境中的高效运动和控制、生物相容性和可降解性,以及临床应用等诸多挑战。因此,文章综述了游动微纳机器人在驱动方法、设计与制造、控制方法及应用的进展,分析了发展趋势,并提出未来的发展建议,以期为相关领域学者提供参考和借鉴,推动游动微纳机器人技术的进一步发展和应用。
常晓丛, 李隆球, 周德开. 游动微纳机器人的发展趋势及挑战[J]. 前瞻科技, 2024, 3(3): 45-60.
CHANG Xiaocong, LI Longqiu, ZHOU Dekai. Development Trends and Challenges of Swimming Micro/Nanorobots[J]. Science and Technology Foresight, 2024, 3(3): 45-60.
[1] | Xiong K, Lin J W, Chen Q, et al. An axis-asymmetric self-driven micromotor that can perform precession multiplying “on-the-fly” mass transfer[J]. Matter, 2023, 6(3): 907-924. |
[2] |
Gao W, Sattayasamitsathit S, Orozco J, et al. Highly efficient catalytic microengines: Template electrosynthesis of polyaniline/platinum microtubes[J]. Journal of the American Chemical Society, 2011, 133(31): 11862-11864.
DOI PMID |
[3] | Illien P, Golestanian R, Sen A. ‘Fuelled’ motion: Phoretic motility and collective behaviour of active colloids[J]. Chemical Society Reviews, 2017, 46(18): 5508-5518. |
[4] |
Duan W T, Liu R, Sen A. Transition between collective behaviors of micromotors in response to different stimuli[J]. Journal of the American Chemical Society, 2013, 135(4): 1280-1283.
DOI PMID |
[5] | Xiao Z Y, Wei M S, Wang W. A review of micromotors in confinements: Pores, channels, grooves, steps, interfaces, chains, and swimming in the bulk[J]. ACS Applied Materials & Interfaces, 2019, 11(7): 6667-6684. |
[6] | Hou Y Z, Wang H P, Fu R X, et al. A review on microrobots driven by optical and magnetic fields[J]. Lab on a Chip, 2023, 23(5): 848-868. |
[7] | Li T L, Yu S M, Sun B, et al. Bioinspired claw-engaged and biolubricated swimming microrobots creating active retention in blood vessels[J]. Science Advances, 2023, 9(18), doi: 10.1126/sciadv.adg4501. |
[8] | Ye Y C, Tian H, Jiang J M, et al. Magnetically actuated biodegradable nanorobots for active immunotherapy[J]. Advanced Science, 2023, 10(25), doi: 10.1002/advs.202300540. |
[9] | Zhou H J, Mayorga-Martinez C C, Pané S, et al. Magnetically driven micro and nanorobots[J]. Chemical Reviews, 2021, 121(8): 4999-5041. |
[10] | Chatzipirpiridis G, de Marco C, Pellicer E, et al. Template-assisted electroforming of fully semi-hard-magnetic helical microactuators[J]. Advanced Engineering Materials, 2018, 20(9), doi: 10.1002/adem.201800179. |
[11] | Kratochvil B E, Kummer M P, Abbott J J, et al. OctoMag: An electromagnetic system for 5-DOF wireless micromanipulation[C]// 2010 IEEE International Conference on Robotics and Automation. Anchorage. Piscataway: IEEE Press, 2010, doi: 10.1109/ROBOT.2010.5509857. |
[12] | Gu H R, Boehler Q, Cui H Y, et al. Magnetic cilia carpets with programmable metachronal waves[J]. Nature Communications, 2020, 11, doi: 10.1038/s41467-020-16458-4. |
[13] | Mu Y J, Duan W D, Hsu K Y, et al. Light-activated colloidal micromotors with synthetically tunable shapes and shape-directed propulsion[J]. ACS Applied Materials & Interfaces, 2022, 14(51): 57113-57121. |
[14] | Ikram M, Peng G G, Hassan Q U, et al. Photoactive and intrinsically fuel sensing metal-organic framework motors for tailoring collective behaviors of active-passive colloids[J]. Small, 2023, 19(34), doi: 10.1002/smll.202301625. |
[15] | Zheng J, Chen J Y, Jin Y K, et al. Photochromism from wavelength-selective colloidal phase segregation[J]. Nature, 2023, 617(7961): 499-506. |
[16] |
Wu Z G, Si T Y, Gao W, et al. Superfast near-infrared light-driven polymer multilayer rockets[J]. Small, 2016, 12(5): 577-582.
DOI PMID |
[17] | Huang Y X, Wu C J, Dai J, et al. Tunable self-thermophoretic nanomotors with polymeric coating[J]. Journal of the American Chemical Society, 2023, 145(36): 19945-19952. |
[18] |
Villa K, Pumera M. Fuel-free light-driven micro/nanomachines: Artificial active matter mimicking nature[J]. Chemical Society Reviews, 2019, 48(19): 4966-4978.
DOI PMID |
[19] |
Favre-Bulle I A, Stilgoe A B, Scott E K, et al. Optical trapping in vivo: Theory, practice, and applications[J]. Nanophotonics, 2019, 8(6): 1023-1040.
DOI |
[20] | Gao Q, Yang Z, Zhu R T, et al. Ultrasonic steering wheels: Turning micromotors by localized acoustic microstreaming[J]. ACS Nano, 2023, 17(5): 4729-4739. |
[21] | Lin S C S, Mao X L, Huang T J. Surface acoustic wave (SAW) acoustophoresis: Now and beyond[J]. Lab on a Chip, 2012, 12(16): 2766-2770. |
[22] | Kim K, Guo J H, Liang Z X, et al. Artificial micro/nanomachines for bioapplications: Biochemical delivery and diagnostic sensing[J]. Advanced Functional Materials, 2018, 28(25), doi: 10.1002/adfm.201705867. |
[23] | Gangwal S, Cayre O J, Bazant M Z, et al. Induced-charge electrophoresis of metallodielectric particles[J]. Physical Review Letters, 2008, 100(5), doi: 10.1103/PhysRevLett.100.058302. |
[24] | Kim K, Xu X B, Guo J H, et al. Ultrahigh-speed rotating nanoelectromechanical system devices assembled from nanoscale building blocks[J]. Nature Communications, 2014, 5, doi: 10.1038/ncomms4632. |
[25] |
Felfoul O, Mohammadi M, Taherkhani S, et al. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions[J]. Nature Nanotechnology, 2016, 11: 941-947.
DOI PMID |
[26] | Zhuang J, Sitti M. Chemotaxis of bio-hybrid multiple bacteria-driven microswimmers[J]. Scientific Reports, 2016, 6, doi: 10.1038/srep32135. |
[27] | Stanton M M, Simmchen J, Ma X, et al. Biohybrid Janus motors driven by Escherichia coli[J]. Advanced Materials Interfaces, 2016, 3(2), doi: 10.1002/admi.201500505. |
[28] |
Xu H F, Medina-Sánchez M, Maitz M F, et al. Sperm micromotors for cargo delivery through flowing blood[J]. ACS Nano, 2020, 14(3): 2982-2993.
DOI PMID |
[29] |
Xu H F, Medina-Sánchez M, Magdanz V, et al. Sperm-hybrid micromotor for targeted drug delivery[J]. ACS Nano, 2018, 12(1): 327-337.
DOI PMID |
[30] |
Medina-Sánchez M, Schwarz L, Meyer A K, et al. Cellular cargo delivery: Toward assisted fertilization by sperm-carrying micromotors[J]. Nano Letters, 2016, 16(1): 555-561.
DOI PMID |
[31] | Zhang F Y, Li Z X, Chen C R, et al. Biohybrid microalgae robots: Design, fabrication, materials, and applications[J]. Advanced Materials, 2024, 36(3), doi:10.1002/adma.202303714. |
[32] |
Xu T L, Soto F, Gao W, et al. Ultrasound-modulated bubble propulsion of chemically powered microengines[J]. Journal of the American Chemical Society, 2014, 136(24): 8552-8555.
DOI PMID |
[33] | Chen C R, Tang S S, Teymourian H, et al. Chemical/light-powered hybrid micromotors with “on-the-fly” optical brakes[J]. Angewandte Chemie (International Ed in English), 2018, 57(27): 8110-8114. |
[34] | Das S S, Erez S, Karshalev E, et al. Switching from chemical to electrical micromotor propulsion across a gradient of gastric fluid via magnetic rolling[J]. ACS Applied Materials & Interfaces, 2022, 14(26): 30290-30298. |
[35] |
Li J X, Li T L, Xu T L, et al. Magneto-acoustic hybrid nanomotor[J]. Nano Letters, 2015, 15(7): 4814-4821.
DOI PMID |
[36] | Wu Y, Yakov S, Fu A F, et al. A magnetically and electrically powered hybrid micromotor in conductive solutions: synergistic propulsion effects and label-free cargo transport and sensing[J]. Advanced Science, 2023, 10(8), doi: 10.1002/advs.202204931. |
[37] | Tang S S, Zhang F Y, Zhao J, et al. Structure-dependent optical modulation of propulsion and collective behavior of acoustic/light-driven hybrid microbowls[J]. Advanced Functional Materials, 2019, 29(23), doi: 10.1002/adfm.201809003. |
[38] | Li J X, Angsantikul P, Liu W J, et al. Biomimetic platelet-camouflaged nanorobots for binding and isolation of biological threats[J]. Advanced Materials, 2018, 30(2), doi: 10.1002/adma.201704800. |
[39] | Zhang L, Abbott J J, Dong L X, et al. Artificial bacterial flagella: Fabrication and magnetic control[J]. Applied Physics Letters, 2009, 94(6), doi: 10.1063/1.3079655. |
[40] |
Zeeshan M A, Grisch R, Pellicer E, et al. Hybrid helical magnetic microrobots obtained by 3D template-assisted electrodeposition[J]. Small, 2014, 10(7): 1284-1288.
DOI PMID |
[41] | Tottori S, Zhang L, Qiu F M, et al. Magnetic helical micromachines: Fabrication, controlled swimming, and cargo transport[J]. Advanced Materials, 2012, 24(6): 811-816. |
[42] |
Schamel D, Pfeifer M, Gibbs J G, et al. Chiral colloidal molecules and observation of the propeller effect[J]. Journal of the American Chemical Society, 2013, 135(33): 12353-12359.
DOI PMID |
[43] | Wang X, Cai J, Sun L L, et al. Facile fabrication of magnetic microrobots based on Spirulina templates for targeted delivery and synergistic chemo-photothermal therapy[J]. ACS Applied Materials & Interfaces, 2019, 11(5): 4745-4756. |
[44] | Mei Y F, Huang G S, Solovev A A, et al. Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers[J]. Advanced Materials, 2008, 20(21): 4085-4090. |
[45] |
Solovev A A, Mei Y F, Bermúdez Ureña E, et al. Catalytic microtubular jet engines self-propelled by accumulated gas bubbles[J]. Small, 2009, 5(14): 1688-1692.
DOI PMID |
[46] | Singh V V, Martin A, Kaufmann K, et al. Zirconia/graphene oxide hybrid micromotors for selective capture of nerve agents[J]. Chemistry of Materials, 2015, 27(23): 8162-8169. |
[47] | Liang Z, Susha A S, Yu A, et al. Nanotubes prepared by layer-by-layer coating of porous membrane templates[J]. Advanced Materials, 2003, 15(21): 1849-1853. |
[48] | Lee T C, Alarcón-Correa M, Miksch C, et al. Self-propelling nanomotors in the presence of strong Brownian forces[J]. Nano Letters, 2014, 14(5): 2407-2412. |
[49] | Loget G, Roche J, Kuhn A. True bulk synthesis of Janus objects by bipolar electrochemistry[J]. Advanced Materials, 2012, 24(37): 5111-5116. |
[50] |
Palacci J, Sacanna S, Steinberg A P, et al. Living crystals of light-activated colloidal surfers[J]. Science, 2013, 339(6122): 936-940.
DOI PMID |
[51] |
Gao W, Feng X M, Pei A, et al. Bioinspired helical microswimmers based on vascular plants[J]. Nano Letters, 2014, 14(1): 305-310.
DOI PMID |
[52] | Chen C R, Chang X C, Angsantikul P, et al. Chemotactic guidance of synthetic organic/inorganic payloads functionalized sperm micromotors[J]. Advanced Biosystems, 2018, 2(1), doi: 10.1002/adbi.201700160. |
[53] | Magdanz V, Sanchez S, Schmidt O G. Development of a sperm-flagella driven micro-bio-robot[J]. Advanced Materials, 2013, 25(45): 6581-6588. |
[54] | Stanton M M, Park B W, Miguel-López A, et al. Biohybrid microtube swimmers driven by single captured bacteria[J]. Small, 2017, 13(19), doi: 10.1002/smll.201603679. |
[55] | Ying Y L, Pourrahimi A M, Sofer Z, et al. Radioactive uranium preconcentration via self-propelled autonomous microrobots based on metal-organic frameworks[J]. ACS Nano, 2019, 13(10): 11477-11487. |
[56] | Huang H W, Uslu F E, Katsamba P, et al. Adaptive locomotion of artificial microswimmers[J]. Science Advances, 2019, 5(1), doi: 10.1126/sciadv.aau1532. |
[57] | Mou F Z, Li Y, Chen C R, et al. Single-component TiO2 tubular microengines with motion controlled by light-induced bubbles[J]. Small, 2015, 11(21): 2564-2570. |
[58] |
Klajn R, Bishop K J M, Grzybowski B A. Light-controlled self-assembly of reversible and irreversible nanoparticle suprastructures[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(25): 10305-10309.
PMID |
[59] |
Wang J Z, Xiong Z, Liu M, et al. Rational design of reversible redox shuttle for highly efficient light-driven microswimmer[J]. ACS Nano, 2020, 14(3): 3272-3280.
DOI PMID |
[60] |
Wang W, Duan W T, Zhang Z X, et al. A tale of two forces: Simultaneous chemical and acoustic propulsion of bimetallic micromotors[J]. Chemical Communications, 2015, 51(6): 1020-1023.
DOI PMID |
[61] | Zhuang R C, Zhou D K, Chang X C, et al. Alternating current electric field driven topologically defective micro/nanomotors[J]. Applied Materials Today, 2022, 26, doi: 10.1016/j.apmt.2021.101314. |
[62] | Roche J, Carrara S, Sanchez J, et al. Wireless powering of e-swimmers[J]. Scientific Reports, 2014, 4, doi: 10.1038/srep06705. |
[63] |
Yang Z L, Wang L M, Gao Z X, et al. Ultrasmall enzyme-powered Janus nanomotor working in blood circulation system[J]. ACS Nano, 2023, 17(6): 6023-6035.
DOI PMID |
[64] |
Li N, Huang C X, Zhang J, et al. Chemotactic NO/H2S nanomotors realizing cardiac targeting of G-CSF against myocardial ischemia-reperfusion injury[J]. ACS Nano, 2023, 17(13): 12573-12593.
DOI PMID |
[65] | Baraban L, Harazim S M, Sanchez S, et al. Chemotactic behavior of catalytic motors in microfluidic channels[J]. Angewandte Chemie (International Ed in English), 2013, 52(21): 5552-5556. |
[66] | Ten Hagen B, Kümmel F, Wittkowski R, et al. Gravitaxis of asymmetric self-propelled colloidal particles[J]. Nature Communications, 2014, 5, doi: 10.1038/ncomms5829. |
[67] | Peng F, Tu Y F, Men Y J, et al. Supramolecular adaptive nanomotors with magnetotaxis behavior[J]. Advanced Materials, 2017, 29(6), doi: 10.1002/adma.201604996. |
[68] |
Schattling P S, Ramos-Docampo M A, Salgueiriño V, et al. Double-fueled Janus swimmers with magnetotactic behavior[J]. ACS Nano, 2017, 11(4): 3973-3983.
DOI PMID |
[69] | Singh D P, Uspal W E, Popescu M N, et al. Photogravitactic microswimmers[J]. Advanced Functional Materials, 2018, 28(25), doi: 10.1002/adfm.201706660. |
[70] | Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533. |
[71] | Yang Y G, Bevan M A, Li B. Hierarchical planning with deep reinforcement learning for 3D navigation of microrobots in blood vessels[J]. Advanced Intelligent Systems, 2022, 4(11), doi: 10.1002/aisy.202200168. |
[72] |
Verma S, Novati G, Koumoutsakos P. Efficient collective swimming by harnessing vortices through deep reinforcement learning[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(23): 5849-5854.
DOI PMID |
[73] | Bao T Y, Li N, Chen H, et al. Drug-loaded zwitterion-based nanomotors for the treatment of spinal cord injury[J]. ACS Applied Materials & Interfaces, 2023, 15(27): 32762-32771. |
[74] | Wu Z G, Lin X K, Zou X, et al. Biodegradable protein-based rockets for drug transportation and light-triggered release[J]. ACS Applied Materials & Interfaces, 2015, 7(1): 250-255. |
[75] | Feng Y W, Chang X C, Liu H, et al. Multi-response biocompatible Janus micromotor for ultrasonic imaging contrast enhancement[J]. Applied Materials Today, 2021, 23, doi: 10.1016/j.apmt.2021.101026. |
[76] |
Zhou D K, Yue H E, Chang X C, et al. Mimicking motor proteins: Wall-guided self-navigation of microwheels[J]. ACS Nano, 2024, 18(12): 8853-8862.
DOI PMID |
[77] | Soto F, Wang J, Ahmed R, et al. Medical micro/nanorobots in precision medicine[J]. Advanced Science, 2020, 7(21), doi: 10.1002/advs.202002203. |
[78] |
Orozco J, García-Gradilla V, D'agostino M, et al. Artificial enzyme-powered microfish for water-quality testing[J]. ACS Nano, 2013, 7(1): 818-824.
DOI PMID |
[79] |
Guix M, Orozco J, García M, et al. Superhydrophobic alkanethiol-coated microsubmarines for effective removal of oil[J]. ACS Nano, 2012, 6(5): 4445-4451.
DOI PMID |
[80] |
Soler L, Magdanz V, Fomin V M, et al. Self-propelled micromotors for cleaning polluted water[J]. ACS Nano, 2013, 7(11): 9611-9620.
DOI PMID |
[81] |
Li J X, Liu W J, Li T L, et al. Swimming microrobot optical nanoscopy[J]. Nano Letters, 2016, 16(10): 6604-6609.
PMID |
[82] |
Li J X, Shklyaev O E, Li T L, et al. Self-propelled nanomotors autonomously seek and repair cracks[J]. Nano Letters, 2015, 15(10): 7077-7085.
DOI PMID |
[83] |
Burdick J, Laocharoensuk R, Wheat P M, et al. Synthetic nanomotors in microchannel networks: Directional microchip motion and controlled manipulation of cargo[J]. Journal of the American Chemical Society, 2008, 130(26): 8164-8165.
DOI PMID |
[84] |
Sundararajan S, Lammert P E, Zudans A W, et al. Catalytic motors for transport of colloidal cargo[J]. Nano Letters, 2008, 8(5): 1271-1276.
DOI PMID |
[85] | Zhang L, Petit T, Peyer K E, et al. Targeted cargo delivery using a rotating nickel nanowire[J]. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8(7): 1074-1080. |
[86] | Manesh K M, Balasubramanian S, Wang J. Nanomotor-based ‘writing’ of surface microstructures[J]. Chemical Communications, 2010, 46(31): 5704-5706. |
[87] | Chang X C, Chen C R, Li J X, et al. Motile micropump based on synthetic micromotors for dynamic micropatterning[J]. ACS Applied Materials & Interfaces, 2019, 11(31): 28507-28514. |
[1] | 杨湛, 陈沁锴, 吴征南, 范新建, 孙立宁. 微纳机器人科学与技术发展现状与趋势[J]. 前瞻科技, 2024, 3(3): 32-44. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京公网安备 11010802038735号