[1] |
Yang G Z, Bellingham J, Dupont P E, et al. The grand challenges of Science Robotics[J]. Science Robotics, 2018, 3(14), doi: 10.1126/scirobotics.aar7650.
|
[2] |
Dupont P E, Nelson B J, Goldfarb M, et al. A decade retrospective of medical robotics research from 2010 to 2020[J]. Science Robotics, 2021, 6(60), doi: 10.1126/scirobotics.abi8017.
|
[3] |
Urso M, Ussia M, Pumera M. Smart micro- and nanorobots for water purification[J]. Nature Reviews Bioengineering, 2023, doi: 10.1038/s44222-023-00025-9.
|
[4] |
Levine A G. 125 questions: Exploration and discovery[M]. Washington, D.C.: American Association for the Advancement of Science, 2021.
|
[5] |
Hu S Y, Sun D. Transportation of biological cells with robot-tweezer manipulation system[C]// 2011 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2011: 5997-6002.
|
[6] |
Zhang Y, Chen B K, Liu X Y, et al. Autonomous robotic pick-and-place of microobjects[J]. IEEE Transactions on Robotics, 2010, 26(1): 200-207.
|
[7] |
Liu Y W, Wang X F, Zhao Q L, et al. Robotic batch somatic cell nuclear transfer based on microfluidic groove[J]. IEEE Transactions on Automation Science and Engineering, 2020, 17(4): 2097-2106.
|
[8] |
Onal C D, Ozcan O, Sitti M. Automated 2-D nanoparticle manipulation with an atomic force microscope[C]// 2009 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2009: 1814-1819.
|
[9] |
Xie H, Régnier S. High-efficiency automated nanomanipulation with parallel imaging/manipulation force microscopy[J]. IEEE Transactions on Nanotechnology, 2012, 11(1): 21-33.
|
[10] |
Li M, Liu L Q, Xu X N, et al. Nanoscale characterization of dynamic cellular viscoelasticity by atomic force microscopy with varying measurement parameters[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 82: 193-201.
DOI
PMID
|
[11] |
Fukuda T, Arai F, Dong L. Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations[J]. Proceedings of the IEEE, 2003, 91(11): 1803-1818.
|
[12] |
Fukuda T, Arai F, Dong L X. Nanorobotic systems[J]. International Journal of Advanced Robotic Systems, 2005, 2(3), doi: 10.5772/5778.
|
[13] |
Dong L X, Arai F, Fukuda T. 3D nanorobotic manipulation of nano-order objects inside SEM[C]// MHS2000. Proceedings of 2000 International Symposium on Micromechatronics and Human Science. Piscataway: IEEE Press, 2000: 151-156.
|
[14] |
Fahlbusch S, Mazerolle S, Breguet J M, et al. Nanomanipulation in a scanning electron microscope[J]. Journal of Materials Processing Technology, 2005, 167(1): 371-382.
|
[15] |
李梦月, 杨佳, 焦念东, 等. 微纳米机器人的最新研究进展综述[J]. 机器人, 2022, 44(6): 732-749.
|
|
Li M Y, Yang J, Jiao N D, et al. Review on the latest research progress of micro-nano robots[J]. Robot, 2022, 44(6): 732-749. (in Chinese)
|
[16] |
Ma X, Jang S, Popescu M N, et al. Reversed Janus micro/nanomotors with internal chemical engine[J]. ACS Nano, 2016, 10(9): 8751-8759.
DOI
PMID
|
[17] |
Xu D D, Zhou C, Zhan C, et al. Enzymatic micromotors as a mobile photosensitizer platform for highly efficient on-chip targeted antibacteria photodynamic therapy[J]. Advanced Functional Materials, 2019, 29(17), doi:10.1002/adfm.201807727.
|
[18] |
Gregory D A, Zhang Y, Smith P J, et al. Reactive inkjet printing of biocompatible enzyme powered silk micro-rockets[J]. Small, 2016, 12(30): 4048-4055.
DOI
PMID
|
[19] |
Xu L H, Zhang K X, Ma X, et al. Boosting cisplatin chemotherapy by nanomotor-enhanced tumor penetration and DNA adducts formation[J]. Journal of Nanobiotechnology, 2022, 20(1), doi: 10.1186/s12951-022-01622-3.
|
[20] |
Gao W, Dong R F, Thamphiwatana S, et al. Artificial micromotors in the mouse’s stomach: A step toward in vivo use of synthetic motors[J]. ACS Nano, 2015, 9(1): 117-123.
|
[21] |
Ma X, Jannasch A, Albrecht U R, et al. Enzyme-powered hollow mesoporous Janus nanomotors[J]. Nano Letters, 2015, 15(10): 7043-7050.
DOI
PMID
|
[22] |
Wang X P, Qin X H, Hu C Z, et al. 3D printed enzymatically biodegradable soft helical microswimmers[J]. Advanced Functional Materials, 2018, 28(45), doi: 10.1002/adfm.201804107.
|
[23] |
Yan X H, Zhou Q, Vincent M, et al. Multifunctional biohybrid magnetite microrobots for imaging-guided therapy[J]. Science Robotics, 2017, 2(12), doi: 10.1126/scirobotics.aaq1155.
|
[24] |
Ilic O, Kaminer I, Lahini Y, et al. Exploiting optical asymmetry for controlled guiding of particles with light[J]. ACS Photonics, 2016, 3(2): 197-202.
|
[25] |
Kong D Z, Fan H H, Yin D, et al. AgFeO2 nanoparticle/ZnIn2S4 microsphere p-n heterojunctions with hierarchical nanostructures for efficient visible-light-driven H2 evolution[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(7): 2673-2683.
|
[26] |
Yan J, Han M, Zhang J, et al. Reconfiguring active particles by electrostaticimbalance[J]. Nature Materials, 2016, 15: 1095-1099.
|
[27] |
Qu J, Zhao X, Ma P X, et al. Injectable antibacterial conductive hydrogels with dual response to an electric field and pH for localized “smart” drug release[J]. Acta Biomaterialia, 2018, 72: 55-69.
|
[28] |
Ahmed D, Baasch T, Blondel N, et al. Neutrophil-inspired propulsion in a combined acoustic and magnetic field[J]. Nature Communications, 2017, 8, doi: 10.1038/s41467-017-00845-5.
|
[29] |
Bouyer C, Chen P, Güven S, et al. A bio-acoustic levitational (BAL) assembly method for engineering of multilayered, 3D brain-like constructs, using human embryonic stem cell derived neuro-progenitors[J]. Advanced Materials, 2016, 28(1): 161-167.
|
[30] |
Chen Y D, Pan R J, Wang Y, et al. Carbon helical nanorobots capable of cell membrane penetration for single cell targeted SERS bio-sensing and photothermal cancer therapy[J]. Advanced Functional Materials, 2022, 32(30), doi: 10.1002/adfm.202200600.
|
[31] |
Chen W J, Jiang R H, Sun X, et al. Self-fueled Janus nanomotors as active drug carriers for propulsion behavior-reinforced permeability and accumulation at the tumor site[J]. Chemistry of Materials, 2022, 34(16): 7543-7552.
|
[32] |
Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range[J]. Journal of Colloid and Interface Science, 1968, 26(1): 62-69.
|
[33] |
Xiao Z Y, Duan S F, Xu P Z, et al. Synergistic speed enhancement of an electric-photochemical hybrid micromotor by tilt rectification[J]. ACS Nano, 2020, 14(7): 8658-8667.
DOI
PMID
|
[34] |
Esteban-Fernández de Ávila B, Angell C, Soto F, et al. Acoustically propelled nanomotors for intracellular siRNA delivery[J]. ACS Nano, 2016, 10(5): 4997-5005.
DOI
PMID
|
[35] |
Cholakova D, Lisicki M, Smoukov S K, et al. Rechargeable self-assembled droplet microswimmers driven by surface phase transitions[J]. Nature Physics, 2021, 17: 1050-1055.
|
[36] |
Schwarz L, Medina-Sánchez M, Schmidt O G. Sperm-hybrid micromotors: on-board assistance for nature’s bustling swimmers[J]. Reproduction, 2020, 159(2), doi: 10.1530/REP-19-0096.
|
[37] |
Akolpoglu M B, Dogan N O, Bozuyuk U, et al. High-yield production of biohybrid microalgae for on-demand cargo delivery[J]. Advanced Science, 2020, 7(16), doi: 10.1002/advs.202001256.
|
[38] |
Shchelik I S, Sieber S, Gademann K. Green algae as a drug delivery system for the controlled release of antibiotics[J]. Chemistry-A European Journal, 2020, 26(70): 16644-16648.
|
[39] |
Li Q L, Chen H T, Feng X Y, et al. Nanoparticle-regulated semiartificial magnetotactic bacteria with tunable magnetic moment and magnetic sensitivity[J]. Small, 2019, 15(15), doi: 10.1002/smll.201900427.
|
[40] |
陈昌友, 宋涛, 杨岑玉, 等. 趋磁细菌动力学分析及细菌机器人的构建[J]. 机器人, 2015, 37(5): 588-593.
DOI
|
|
Chen C Y, Song T, Yang C Y, et al. Dynamic analysis of magnetotactic bacteria and construction of bacterial microrobot[J]. Robot, 2015, 37(5): 588-593. (in Chinese)
DOI
|
[41] |
Yoon J, Eyster T W, Misra A C, et al. Cardiomyocyte-driven actuation in biohybrid microcylinders[J]. Advanced Materials, 2015, 27(30): 4509-4515.
|
[42] |
Gao L, Akhtar M U, Yang F, et al. Recent progress in engineering functional biohybrid robots actuated by living cells[J]. Acta Biomaterialia, 2021, 121: 29-40.
DOI
PMID
|
[43] |
Sun L Y, Yu Y R, Chen Z Y, et al. Biohybrid robotics with living cell actuation[J]. Chemical Society Reviews, 2020, 49(12): 4043-4069.
DOI
PMID
|
[44] |
Buss N, Yasa O, Alapan Y, et al. Nanoerythrosome-functionalized biohybrid microswimmers[J]. APL Bioengineering, 2020, 4(2), doi: 10.1063/1.5130670.
|
[45] |
Xu H F, Medina-Sánchez M, Maitz M F, et al. Sperm micromotors for cargo delivery through flowing blood[J]. ACS Nano, 2020, 14(3): 2982-2993.
DOI
PMID
|
[46] |
Xiao S S, Shi H, Zhang Y, et al. Bacteria-driven hypoxia targeting delivery of chemotherapeutic drug proving outcome of breast cancer[J]. Journal of Nanobiotechnology, 2022, 20(1), doi: 10.1186/s12951-022-01373-1.
|
[47] |
Akolpoglu M B, Alapan Y, Dogan N O, et al. Magnetically steerable bacterial microrobots moving in 3D biological matrices for stimuli-responsive cargo delivery[J]. Science Advances, 2022, 8(28), doi: 10.1126/sciadv.abo6163.
|
[48] |
Ciuti G, Donlin R, Valdastri P, et al. Robotic versus manual control in magnetic steering of an endoscopic capsule[J]. Endoscopy, 2010, 42(2): 148-152.
DOI
PMID
|
[49] |
Ryan P, Diller E. Magnetic actuation for full dexterity microrobotic control using rotating permanent magnets[J]. IEEE Transactions on Robotics, 2017, 33(6): 1398-1409.
|
[50] |
Diller E, Giltinan J, Lum G Z, et al. Six-degree-of-freedom magnetic actuation for wireless microrobotics[J]. The International Journal of Robotics Research, 2016, 35(1-3): 114-128.
|
[51] |
Toyota T, Maru N, Hanczyc M M, et al. Self-propelled oil droplets consuming “fuel” surfactant[J]. Journal of the American Chemical Society, 2009, 131(14): 5012-5013.
DOI
PMID
|