[1] |
Hofer A M, Brown E M. Extracellular calcium sensing and signalling[J]. Nature Reviews Molecular Cell Biology, 2003, 4(7): 530-538.
PMID
|
[2] |
李诗琪, 骆怡琳, 万建文, 等. 基于核酸适体的电化学生物传感研究[J]. 分析测试学报, 2024, 43(2): 328-337.
|
|
Li S Q, Luo Y L, Wan J W, et al. Aptamer-based electrochemical biosensing[J]. Journal of Instrumental Analysis, 2024, 43(2): 328-337. (in Chinese)
|
[3] |
Gao J, Zhang H, Xiong P, et al. Application of electrophysiological technique in toxicological study: From manual to automated patch-clamp recording[J]. TrAC Trends in Analytical Chemistry, 2020, 133, doi: 10.1016/j.trac.2020.116082.
|
[4] |
Gao J, Liao C Y, Liu S J, et al. Nanotechnology: New opportunities for the development of patch-clamps[J]. Journal of Nanobiotechnology, 2021, 19(1), doi:10.1186/s12951-021-00841-4.
|
[5] |
Asif M H, Fulati A, Nur O, et al. Functionalized zinc oxide nanorod with ionophore-membrane coating as an intracellular Ca2+ selective sensor[J]. Applied Physics Letters, 2009, 95(2), doi: 10.1063/1.3176441.
|
[6] |
Wang Y H, Huang K, Wang T Y, et al. Nanosensors monitor intracellular GSH depletion: GSH triggers Cu(II) for tumor imaging and inhibition[J]. Small, 2024, 20(27), doi: 10.1002/smll.202310300.
|
[7] |
Zhang C L, You Y R, Xie Y, et al. Salt gradient enhanced sensitivity in nanopores for intracellular calcium ion detection[J]. Talanta, 2024, 276, doi: 10.1016/j.talanta.2024.126261.
|
[8] |
Wang Y, Yang X Z, Zhang X W, et al. Implantable intracortical microelectrodes: Reviewing the present with a focus on the future[J]. Microsystems & Nanoengineering, 2023, 9, doi: 10.1038/s41378-022-00451-6.
|
[9] |
Liu Y Y, Xu S H, Yang Y, et al. Nanomaterial-based microelectrode arrays for in vitro bidirectional brain-computer interfaces: A review[J]. Microsystems & Nanoengineering, 2023, 9, doi: 10.1038/s41378-022-00479-8.
|
[10] |
Nazempour R, Zhang B Z, Ye Z Y, et al. Emerging applications of optical fiber-based devices for brain research[J]. Advanced Fiber Materials, 2022, 4(1): 24-42.
|
[11] |
Wang L C, Ge C F, Wang F, et al. Dense packed drivable optrode array for precise optical stimulation and neural recording in multiple-brain regions[J]. ACS Sensors, 2021, 6(11): 4126-4135.
DOI
PMID
|
[12] |
Musk E. An integrated brain-machine interface platform with thousands of channels[J]. Journal of Medical Internet Research, 2019, 21(10), doi: 10.2196/16194.
|
[13] |
Xu Z J, Mo F, Yang G C, et al. Grid cell remapping under three-dimensional object and social landmarks detected by implantable microelectrode arrays for the medial entorhinal cortex[J]. Microsystems & Nanoengineering, 2022, 8, doi: 10.1038/s41378-022-00436-5.
|
[14] |
Zhang S, Song Y L, Wang M X, et al. Real-time simultaneous recording of electrophysiological activities and dopamine overflow in the deep brain nuclei of a non-human primate with Parkinson’s disease using nano-based microelectrode arrays[J]. Microsystems & Nanoengineering, 2018, 4, doi: 10.1038/micronano.2017.70.
|
[15] |
Rogers J A, Chen X D, Feng X. Flexible hybrid electronics[J]. Advanced Materials, 2020, 32(15), doi: 10.1002/adma.201905590.
|
[16] |
Wang M, Luo Y, Wang T, et al. Artificial skin perception[J]. Advanced Materials (Deerfield Beach, Fla), 2021, 33(19), doi: 10.1002/adma.202003014.
|
[17] |
Rogers J, Malliaras G, Someya T. Biomedical devices go wild[J]. Science Advances, 2018, 4(9), doi:10.1126/sciadv.aav1889.
|
[18] |
Shih B, Shah D, Li J X, et al. Electronic skins and machine learning for intelligent soft robots[J]. Science Robotics, 2020, 5(41), doi: 10.1126/scirobotics.aaz9239.
|
[19] |
Gonenc B, Chamani A, Handa J, et al. 3-DOF force-sensing motorized micro-forceps for robot-assisted vitreoretinal surgery[J]. IEEE Sensors Journal, 2017, 17(11): 3526-3541.
DOI
PMID
|
[20] |
Gracioso Martins A M, Wilkins M D, Ligler F S, et al. Microphysiological system for high-throughput computer vision measurement of microtissue contraction[J]. ACS Sensors, 2021, 6(3): 985-994.
DOI
PMID
|
[21] |
Shakoor A, Xie M Y, Gao W D, et al. Quality and quantity control of mitochondria injection into single cells with robot-aided micro-manipulation system[J]. IEEE Transactions on Automation Science and Engineering, 2024, 21(3): 3396-3407.
|
[22] |
Zhai R A, Shan G Q, Dai C S, et al. Robotic denudation of zygotes[J]. Advanced Robotics, 2023, 37(18): 1158-1170.
|
[23] |
Zou M Q, Liao C R, Liu S, et al. Fiber-tip polymer clamped-beam probe for high-sensitivity nanoforce measurements[J]. Light, Science & Applications, 2021, 10(1), doi: 10.1038/s41377-021-00611-9.
|
[24] |
Kim Y, Parada G A, Liu S D, et al. Ferromagnetic soft continuum robots[J]. Science Robotics, 2019, 4(33), doi: 10.1126/scirobotics.aax7329.
|
[25] |
Zhao X T, Shi Y, Pan T, et al. In situ single-cell surgery and intracellular organelle manipulation via thermoplasmonics combined optical trapping[J]. Nano Letters, 2022, 22(1): 402-410.
|
[26] |
Zhang T C, Ping Z Y, Zuo S Y. Miniature continuum manipulator with three degrees-of-freedom force sensing for retinal microsurgery[J]. Journal of Mechanisms and Robotics, 2021, 13(4), doi: 10.1115/1.4049976.
|
[27] |
Athanasopoulos T, Munye M M, Yáñez-Muñoz R J. Nonintegrating gene therapy vectors[J]. Hematology/Oncology Clinics of North America, 2017, 31(5): 753-770.
DOI
PMID
|
[28] |
Tang R, Xu Z G. Gene therapy: A double-edged sword with great powers[J]. Molecular and Cellular Biochemistry, 2020, 474(1/2): 73-81.
|
[29] |
Zong Y, Lin Y, Wei T, et al. Lipid nanoparticle (LNP) enables mRNA delivery for cancer therapy[J]. Advanced Materials, 2023, 35(51), doi: 10.1002/adma.202303261.
|
[30] |
Chang L Q, Gallego-Perez D, Chiang C L, et al. Controllable large-scale transfection of primary mammalian cardiomyocytes on a nanochannel array platform[J]. Small, 2016, 12(43): 5971-5980.
DOI
PMID
|
[31] |
Mir L M. Electroporation-based gene therapy: Recent evolution in the mechanism description and technology developments[J]. Methods in Molecular Biology, 2014, 1121: 3-23.
DOI
PMID
|
[32] |
Teo Y H, Yap J H, An H, et al. Enhancing the MEP coordination process with BIM technology and management strategies[J]. Sensors, 2022, 22(13), doi: 10.3390/s22134936.
|
[33] |
Beebe D J, Mensing G A, Walker G M. Physics and applications of microfluidics in biology[J]. Annual Review of Biomedical Engineering, 2002, 4: 261-286.
PMID
|
[34] |
Grate J, Martin S J, White R. Acoustic wave microsensors PART II[J]. Analytical Chemistry, 1993, 65(21): doi: 10.1021/AC00070A717.
|
[35] |
Friend J, Yeo L Y. Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics[J]. Reviews of Modern Physics, 2011, 83(2): 647-704.
|
[36] |
Ding X Y, Li P, Lin S C S, et al. Surface acoustic wave microfluidics[J]. Lab on a Chip, 2013, 13(18): 3626-3649.
DOI
PMID
|
[37] |
Lenshof A, Evander M, Laurell T, et al. Acoustofluidics 5: Building microfluidic acoustic resonators[J]. Lab on a Chip, 2012, 12(4): 684-695.
DOI
PMID
|
[38] |
Zhang C Y, Guo X F, Royon L, et al. Acoustic streaming generated by sharp edges: The coupled influences of liquid viscosity and acoustic frequency[J]. Micromachines, 2020, 11(6), doi: 10.3390/mi11060607.
|
[39] |
Gao Y, Wu M R, Luan Q Y, et al. Acoustic bubble for spheroid trapping, rotation, and culture: A tumor-on-a-chip platform (ABSTRACT platform)[J]. Lab on a Chip, 2022, 22(4): 805-813.
|
[40] |
Li J F, Crivoi A, Peng X Y, et al. Three dimensional acoustic tweezers with vortex streaming[J]. Communications Physics, 2021, 4, doi: 10.1038/s42005-021-00617-0.
|
[41] |
Yang Y, Yang Y Z, Liu D Y, et al. In-vivo programmable acoustic manipulation of genetically engineered bacteria[J]. Nature Communications, 2023, 14, doi: 10.1038/s41467-023-38814-w.
|
[42] |
Huang Y Q, Das P K, Bhethanabotla V R. Surface acoustic waves in biosensing applications[J]. Sensors and Actuators Reports, 2021, 3, doi: 10.1016/j.snr.2021.100041.
|
[43] |
Wu Z H, Ao Z, Cai H W, et al. Acoustofluidic assembly of primary tumor-derived organotypic cell clusters for rapid evaluation of cancer immunotherapy[J]. Journal of Nanobiotechnology, 2023, 21(1), doi: 10.1186/s12951-023-01786-6.
|
[44] |
Sui M Y, Dong H J, Mu G Y, et al. Droplet transportation by adjusting the temporal phase shift of surface acoustic waves in the exciter-exciter mode[J]. Lab on a Chip, 2022, 22(18): 3402-3411.
|
[45] |
Collins D J, Devendran C, Ma Z C, et al. Acoustic tweezers via sub-time-of-flight regime surface acoustic waves[J]. Science Advances, 2016, 2(7), doi: 10.1126/sciadv.1600089.
|
[46] |
Pan H M, Mei D Q, Xu C Y, et al. Bisymmetric coherent acoustic tweezers based on modulation of surface acoustic waves for dynamic and reconfigurable cluster manipulation of particles and cells[J]. Lab on a Chip, 2023, 23(2): 215-228.
|
[47] |
Qin X M, Wei X Y, Li L, et al. Acoustic valves in microfluidic channels for droplet manipulation[J]. Lab on a Chip, 2021, 21(16): 3165-3173.
|
[48] |
Zhang S L, Elsayed M, Peng R, et al. Reconfigurable multi-component micromachines driven by optoelectronic tweezers[J]. Nature Communications, 2021, 12(1), doi: 10.1038/s41467-021-25582-8.
|
[49] |
Li Y C, Liu X S, Li B J. Single-cell biomagnifier for optical nanoscopes and nanotweezers[J]. Light: Science & Applications, 2019, 8, doi: 10.1038/s41377-019-0168-4.
|