[1] |
Miller K A, Thompson K F, Johnston P, et al. An overview of seabed mining including the current state of development, environmental impacts, and knowledge gaps[J]. Frontiers in Marine Science, 2018, doi: 10.3389/fmars.2017.00418.
|
[2] |
Guo X, Fan N, Liu Y, et al. Deep seabed mining: Frontiers in engineering geology and environment[J]. International Journal of Coal Science & Technology, 2023, doi: 10.1007/s40789-023-00580-x.
|
[3] |
康娅娟, 刘少军. 深海多金属结核开采技术发展历程及展望[J]. 中国有色金属学报, 2021, 31(10): 2848-2860.
|
|
Kang Y J, Liu S J. Development history and prospect of deep sea polymetallic nodules mining technology[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(10): 2848-2860. (in Chinese)
|
[4] |
李家彪, 王叶剑, 刘磊, 等. 深海矿产资源开发技术发展现状与展望[J]. 前瞻科技, 2022, 1(2): 92-102.
DOI
|
|
Li J B, Wang Y J, Liu L, et al. Current status and prospect of deep-sea mining technology[J]. Science and Technology Foresight, 2022, 1(2): 92-102. (in Chinese)
DOI
|
[5] |
Su X, Tang Z, Li Y, et al. Research of particle motion in a two-stage slurry transport pump for deep-ocean mining by the CFD-DEM method[J]. Energies, 2020, 13(24), doi: 10.3390/en13246711.
|
[6] |
唐达生, 阳宁, 金星. 深海粗颗粒矿石垂直管道水力提升技术[J]. 矿冶工程, 2013, 33(5): 1-8.
|
|
Tang D S, Yang N, Jin X. Hydraulic lifting technique with vertical pipe for deep-sea coarse mineral particles[J]. Mining and Metallurgical Engineering, 2013, 33(5): 1-8. (in Chinese)
|
[7] |
Chen W, Guo S X, Li Y L, et al. Structural configurations and dynamic performances of flexible riser with distributed buoyancy modules based on FEM simulations[J]. International Journal of Naval Architecture and Ocean Engineering, 2021, 13: 650-658.
|
[8] |
Dionicio-Bravo S, Cuamatzi-Meléndez R, Ruiz-Mendoza A, et al. Finite element modelling and theoretical analysis of flexible risers subjected to installation/crushing loads[J]. Ocean Engineering, 2023, 272, doi: 10.1016/j.oceaneng.2023.113856.
|
[9] |
Huang T, Chucheepsakul S. Large displacement analysis of a marine riser[J]. Journal of Energy Resources Technology, 1985, 107(1): 54-59.
|
[10] |
徐海良. 单泵与储料罐组合的深海釆矿软管输送系统研究[D]. 长沙: 中南大学, 2004.
|
|
Xu H L. Research on the combined single pump and ore tank deep-sea mining flexible pipe transporting system[D]. Changsha: Central South University, 2004. (in Chinese)
|
[11] |
王刚, 刘少军, 李力. 深海采矿扬矿系统水下构形与动力学特性数值仿真[J]. 计算机仿真, 2005, 22(10): 295-298.
|
|
Wang G, Liu S J, Li L. Numerical simulation of configuration and dynamics characteristics for lift pipe system in deep sea mining[J]. Computer Simulation, 2005, 22(10): 295-298. (in Chinese)
|
[12] |
Kim I K, Yoon C H, Kwon K S, et al. Intellection of transport mechanism of multi-mixtures in the vertical pipe by air lifting system for deep sea manganese nodules[J]. Geosystem Engineering, 1998, 1(1): 1-6.
|
[13] |
Bar-Avi P. Dynamic response of risers conveying fluid[J]. Journal of Offshore Mechanics and Arctic Engineering, 2000, 122(3): 188-193.
|
[14] |
李艳, 廖科, 卢飞, 等. 考虑流固耦合的1 000 m深海扬矿硬管动力学分析[J]. 水资源与水工程学报, 2017, 28(1): 163-168.
|
|
Li Y, Liao K, Lu F, et al. Dynamic analysis of 1 000 m deep ocean lifting pipes considering fluid structure interaction[J]. Journal of Water Resources & Water Engineering, 2017, 28(1): 163-168. (in Chinese)
|
[15] |
Wang Z, Rao Q H, Liu S J. Fluid-solid interaction of resistance loss of flexible hose in deep ocean mining[J]. Journal of Central South University, 2012, 19(11): 3188-3193.
|
[16] |
鲍健, 陈正寿. 细长输流管内外流耦合振动特性研究[J]. 海洋工程, 2022, 40(2): 78-87.
|
|
Bao J, Chen Z S. Study on coupling vibration characteristics of slender fluid-conveying pipe subject to internal flow and external current[J]. The Ocean Engineering, 2022, 40(2): 78-87. (in Chinese)
|
[17] |
Witz J A. A case study in the cross-section analysis of flexible risers[J]. Marine Structures, 1996, 9(9): 885-904.
|
[18] |
Smith R, O’ Brien P, O’ Sullivan T, et al. Fatigue analysis of unbonded flexible riser with irregular seas and hysteresis[C]// Offshore Technology Conference. Houston: OTC, 2007, doi: org/10.4043/18905-MS.
|
[19] |
Claydon P, Cook G, Brown P A, et al. A theoretical approach to prediction of service life of unbonded flexible pipes under dynamic loading conditions[J]. Marine Structures, 1992, 5(5): 399-429.
|
[20] |
董磊磊, 张崎, 黄一. 基于能量法的非黏合柔性立管轴对称响应分析[J]. 华中科技大学学报(自然科学版), 2013, 41(5): 122-126.
|
|
Dong L L, Zhang Q, Huang Y. Energy approaches based axisymmetric analysis of unbonded flexible risers[J]. Huazhong University of Science & Technology (Natural Science Edition), 2013, 41(5): 122-126. (in Chinese)
|
[21] |
陆钰天. 深水柔性立管截面力学模型与疲劳寿命分析研究[D]. 杭州: 浙江大学, 2017.
|
|
Lu Y T. Research on cross-sectional mechanical model and fatigue life analysis of deepwater flexible risers[D]. Hangzhou: Zhejiang University, 2017. (in Chinese)
|
[22] |
原帅. 径向压力作用下非粘结柔性管极限承载力研究[D]. 杭州: 浙江大学, 2017.
|
|
Yuan S. Ultimate capacity study for unbonded flexible pipes under pressures[D]. Hangzhou: Zhejiang University, 2017. (in Chinese)
|
[23] |
任少飞. 非粘结柔性立管截面力学性能及典型失效特性研究[D]. 上海: 上海交通大学, 2015.
|
|
Ren S F. Study of cross-sectional mechanical properties and typical failure characteristics of unbounded flexible risers[D]. Shanghai: Shanghai Jiaotong University, 2015. (in Chinese)
|
[24] |
邹伟生, 刘瑞仙, 刘少军. 粗颗粒海底矿石浆体提升电泵研究[J]. 中国机械工程, 2019, 30(24): 2939-2944.
|
|
Zou W S, Liu R X, Liu S J. Study on lifting motor pumps for coarse particle slurry in sea bed mining[J]. China Mechanical Engineering, 2019, 30(24): 2939-2944. (in Chinese)
|
[25] |
沈义俊, 陈敏芳, 杜燕连, 等. 深海矿物资源开发系统关键力学问题及技术挑战[J]. 力学与实践, 2022, 44(5): 1005-1020.
|
|
Shen Y J, Chen M F, Du Y L, et al. Key mechanical issues and technical challenges of deep-sea mining development system[J]. Mechanics in Engineering, 2022, 44(5): 1005-1020. (in Chinese)
|
[26] |
符瑜, 曹斌, 夏建新. 深海采矿系统浮力配置对集矿车受力状态的影响[J]. 矿冶工程, 2019, 39(2): 15-18.
|
|
Fu Y, Cao B, Xia J X. Influence of parameter configuration of hose buoyancy for deep-sea mining system on the stress state of mining vehicle[J]. Mining and Metallurgical Engineering, 2019, 39(2): 15-18. (in Chinese)
|
[27] |
康娅娟, 王长伟, 刘少军, 等. 深海多金属结核商业开采水下垂直提升方案[J]. 中国有色金属学报, 2021, 31(10): 2938-2952.
|
|
Kang Y J, Wang C W, Liu S J, et al. Underwater vertical lifting scheme for commercial mining of deep-sea poly-metallic nodules[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(10): 2938-2952. (in Chinese)
|
[28] |
夏秋, 贾浩, 宿向辉, 等. 海底矿石颗粒水力采集运动特性研究[J]. 工程热物理学报, 2023, 44(3): 660-667.
|
|
Xia Q, Jia H, Su X H, et al. Motion characterization of seabed ore particle in hydraulic collecting[J]. Journal of Engineering Thermophysics, 2023, 44(3): 660-667. (in Chinese)
|
[29] |
邹燚, 曹斌, 夏建新. 深海采矿中试系统水力提升管道水击压力分析[J]. 力学与实践, 2015, 37(5): 603-606.
|
|
Zou Y, Cao B, Xia J X. Water hammer pressure of hydraulic lifting pipeline in seep-sea mining pilot system[J]. Mechanics in Engineering, 2015, 37(5): 603-606. (in Chinese)
|
[30] |
关英杰, 郑皓, 宿向辉, 等. 垂直管道内粗颗粒运动特性数值模拟[J]. 矿冶工程, 2019, 39(2): 10-14.
|
|
Guan Y J, Zheng H, Su X H, et al. Numerical simulation of trajectory of coarse particle motion in vertical pipeline[J]. Mining and Metallurgical Engineering, 2019, 39(2): 10-14. (in Chinese)
|