[1] |
高芸, 王蓓, 胡迤丹, 等. 2023年中国天然气发展述评及2024年展望[J]. 天然气工业, 2024, 44(2): 166-177.
|
|
Gao Y, Wang B, Hu Y D, et al. Development of China’s natural gas: Review 2023 and outlook 2024[J]. Natural Gas Industry, 2024, 44(2): 166-177. (in Chinese)
|
[2] |
王璐, 熊乐航, 张远, 等. LNG接收站冷排水的温降及余氯对水环境影响的数值模拟——以湄洲湾东吴港区为例[J]. 环境工程技术学报, 2021, 11(5): 962-969.
|
|
Wang L, Xiong L H, Zhang Y, et al. Numerical simulation of temperature drop and influence of residual chlorine on water environment in LNG terminal: A case study in Dongwu port area of Meizhou Bay[J]. Journal of Environmental Engineering Technology, 2021, 11(5): 962-969. (in Chinese)
|
[3] |
杜旭, 陈煜, 巨永林. 液化天然气(LNG)的长距离输送及其冷能利用[J]. 化工学报, 2018, 69(增刊2): 442-449.
|
|
Du X, Chen Y, Ju Y L. Long-distance transportation of liquefied natural gas (LNG) and its cold energy utilization[J]. Journal of Chemical Engineering, 2018, 69(Suppl 2): 442-449. (in Chinese)
|
[4] |
Zhang H, Zhang C, Ji W T, et al. Experimental characterization of the thermal conductivity and microstructure of opacifier-fiber-aerogel composite[J]. Molecules, 2018, doi: 10.3390/molecules23092198.
|
[5] |
Kim J D, Kim J H, Lee D H, et al. Synthesis and investigation of cryogenic mechanical properties of chopped-glass-fiber-reinforced polyisocyanurate foam[J]. Materials, 2021, doi: 10.3390/ma14020446.
|
[6] |
张益公, 李文杰, 苏靖伟, 等. LNG接收站绝热结构中泡沫玻璃的绝热效果研究及分析[J]. 石油和化工设备, 2023, 26(8): 22-26.
|
|
Zhang Y G, Li W J, Su J W, et al. Study and analysis on the insulation effect of foam glass in the adiabatic structure of LNG receiving station[J]. Oil and Chemical Equipment, 2023, 26(8): 22-26. (in Chinese)
|
[7] |
中国工程建设标准化协会化工分会. 工业设备及管道绝热工程设计规范: GB 50264—2013[S]. 北京: 中国计划出版社, 2013.
|
|
Chemical Branch of China Engineering Construction Standardization Association. Code for design of industrial equipment and pipeline insulation engineering: GB 50264—2013[S]. Beijing: China Planning Press, 2013.
|
[8] |
柳海章. LNG管线法兰热—结构耦合分析[D]. 天津: 天津大学, 2017.
|
|
Liu H Z. Thermal-structural coupling analysis of LNG pipeline flange[D]. Tianjin: Tianjin University, 2017. (in Chinese)
|
[9] |
姜英宇, 张奕, 刘中河, 等. 天津南港LNG 接收站冷能利用可行性分析研究[J]. 山东化工, 2022, 51(17): 160-162, 165.
|
|
Jiang Y Y, Zhang Y, Liu Z H, et al. Feasibility study on cold energy utilization of Tianjin Nangang LNG receiving station[J]. Shandong Chemical Industry, 2022, 51(17): 160-162, 165. (in Chinese)
|
[10] |
Zeng Q, Fang J K, Li J H, et al. Steady-state analysis of the integrated natural gas and electric power system with bi-directional energy conversion[J]. Applied Energy, 2016, 184: 1483-1492.
|
[11] |
Li Z, Liang Y, Liao Q, et al. A review of multiproduct pipeline scheduling: From bibliometric analysis to research framework and future research directions[J]. Journal of Pipeline Science and Engineering, 2021, 1(4): 395-406.
|
[12] |
Liu C, Shahidehpour M, Wang J H. Coordinated scheduling of electricity and natural gas infrastructures with a transient model for natural gas flow[J]. Chaos, 2011, doi: 10.1063/1.3600761.
|
[13] |
张杨, 厉彦忠, 谭宏博, 等. 天然气与电力长距离联合高效输送的可行性研究[J]. 西安交通大学学报, 2013, 47(9): 1-7.
|
|
Zhang Y, Li Y Z, Tan H B, et al. Feasibility study on long-distance joint efficient transportation of natural gas and electricity[J]. Journal of Xi’an Jiaotong University, 2013, 47(9): 1-7. (in Chinese)
|