前瞻科技 ›› 2024, Vol. 3 ›› Issue (1): 126-136.DOI: 10.3981/j.issn.2097-0781.2024.01.011
收稿日期:
2023-10-11
修回日期:
2024-01-25
出版日期:
2024-03-20
发布日期:
2024-03-27
通讯作者:
†
作者简介:
晏琼,副教授。主要从事环境生物技术与生物材料研究。主持和参与军委科技委国防科技创新特区项目、国家自然科学基金、装备预研教育部联合基金、北京市自然科学基金等项目20余项。发表论文30余篇,完成国防科技报告2份等。电子信箱:qyan@bjtu.edu.cn。基金资助:
YAN Qiong(), ZHANG Jinlei, FENG Ke, LI Huanyu, LI Yue, CHENG Xiyu(
)
Received:
2023-10-11
Revised:
2024-01-25
Online:
2024-03-20
Published:
2024-03-27
Contact:
†
摘要:
构建以绿色、可循环生命保障系统(简称生保系统)为支撑的月球/火星等地外科考基地,是开展深空探测的重要基础和前提。文章在对航天生保系统进行深入分析的基础上,系统梳理了影响生保系统可循环性能的关键生物技术,总结了物质流调控、植物栽培、生物加工、环境监测与控制技术的研究现状及面临的问题与挑战,并展望了发展趋势。最后提出发展宏基因组学、合成生物学驱动的空天生物交叉技术等对策建议,以期为新一代生保系统与未来地外科考基地建设提供参考。
晏琼, 张金磊, 冯可, 李环宇, 李玥, 成喜雨. 地外可循环生命保障系统关键生物技术发展与建议[J]. 前瞻科技, 2024, 3(1): 126-136.
YAN Qiong, ZHANG Jinlei, FENG Ke, LI Huanyu, LI Yue, CHENG Xiyu. Development and Suggestions on Key Biotechnology of Extraterrestrial Recyclable Life Support Systems[J]. Science and Technology Foresight, 2024, 3(1): 126-136.
系统 | 再生保障技术 | 评价 |
---|---|---|
不可再生生保系统 | 固废处理:返回后丢弃; 废液处理:返回后丢弃; 气体再生:随飞船携带不可再生 | 水、气、食物均不可再生。废物不能再利用,只适合短期近地空间探索 |
物理化学再生生保系统 | 固废处理:返回后丢弃; 废液处理:过滤、吸附等物化法净化; 气体再生:电解法再生氧气 | 水、气能够部分再生,但水资源会被逐渐消耗。食物完全不可再生,能满足长时间近地空间活动需要 |
生物再生生保系统 | 固废处理:堆肥或焚烧矿化; 废液处理:植物、微生物净化废水; 气体再生:植物、微生物再生净化气体 | 水、气体、食物能够再生,系统内所有元素都会参与到内部的物质循环,来满足人类长期太空生存需要 |
表1 现有生保系统的比较和分析
Table 1 Comparison and analysis of existing life support systems
系统 | 再生保障技术 | 评价 |
---|---|---|
不可再生生保系统 | 固废处理:返回后丢弃; 废液处理:返回后丢弃; 气体再生:随飞船携带不可再生 | 水、气、食物均不可再生。废物不能再利用,只适合短期近地空间探索 |
物理化学再生生保系统 | 固废处理:返回后丢弃; 废液处理:过滤、吸附等物化法净化; 气体再生:电解法再生氧气 | 水、气能够部分再生,但水资源会被逐渐消耗。食物完全不可再生,能满足长时间近地空间活动需要 |
生物再生生保系统 | 固废处理:堆肥或焚烧矿化; 废液处理:植物、微生物净化废水; 气体再生:植物、微生物再生净化气体 | 水、气体、食物能够再生,系统内所有元素都会参与到内部的物质循环,来满足人类长期太空生存需要 |
[1] |
于登云, 马继楠. 中国深空探测进展与展望[J]. 前瞻科技, 2022, 1(1): 17-27.
DOI |
Yu D Y, Ma J N. Progress and prospect of deep space exploration in China[J]. Science and Technology Foresight, 2022, 1(1): 17-27. (in Chinese)
DOI |
|
[2] | 吴伟仁, 于登云, 王赤, 等. 月球极区探测的主要科学与技术问题研究[J]. 深空探测学报, 2020, 7(3): 223-231, 240. |
Wu W R, Yu D Y, Wang C, et al. Research on the main scientific and technological issues on lunar polar exploration[J]. Journal of Deep Space Exploration, 2020, 7(3): 223-231, 240. (in Chinese)
DOI |
|
[3] | 刘向阳, 高峰, 邓一兵, 等. 中国空间站再生生保系统的设计与实现[J]. 中国科学: 技术科学, 2022, 52(9): 1375-1392. |
Liu X Y, Gao F, Deng Y B, et al. Design and implementation of regenerative life support system in the China space station[J]. Scientia Sinica (Technologica), 2022, 52(9): 1375-1392. (in Chinese) | |
[4] |
Averner M M, Moore B, Bartholomew I, et al. Atmosphere behavior in gas-closed mouse-algal systems: An experimental and modelling study[J]. Advances in Space Research, 1984, 4(12): 231-239.
PMID |
[5] |
De Pascale S, Arena C, Aronne G, et al. Biology and crop production in space environments: Challenges and opportunities[J]. Life Sciences in Space Research, 2021, 29: 30-37.
DOI PMID |
[6] |
Brown L, Peick J, Pickett M, et al. Aquatic invertebrate protein sources for long-duration space travel[J]. Life Sciences in Space Research, 2021, 28: 1-10.
DOI PMID |
[7] |
Tikhomirova N A, Trifonov S V, Ushakova S A, et al. Incorporation of mineralized human waste and fish waste as a source of higher plant mineral nutrition in the BTLSS mass exchange[J]. Life Sciences in Space Research, 2019, 20: 53-61.
DOI PMID |
[8] |
Tikhomirov A, Ushakova S, Velichko V, et al. Possible risks for the functioning of cyclic processes in the experimental model of a closed ecosystem[J]. Life Sciences in Space Research, 2022, 33: 33-40.
DOI PMID |
[9] | 艾为党, 郭双生, 董文平, 等. “微藻-小白鼠”二元生态系统气体交换规律研究[J]. 载人航天, 2014, 20(6): 510-516. |
Ai W D, Guo S S, Dong W P, et al. Research on gas exchange in the microalgae-mice system[J]. Manned Spaceflight, 2014, 20(6): 510-516. (in Chinese) | |
[10] | 杨有泉, 邓素芳, 陈敏. CELSS系统中两种叶用蔬菜与红萍光合供O2效应对比研究[J]. 福建热作科技, 2016, 41(4): 16-21. |
Yang Y Q, Deng S F, Chen M. Comparative study on the effect of photosynthetic O2 feeding by two leafy vegetables and rhizome in CELSS system[J]. Fujian Hot Work Science and Technology, 2016, 41(4): 16-21. (in Chinese) | |
[11] |
Zhang L C, Li T, Ai W D, et al. Water management in a controlled ecological life support system during a 4-person-180-day integrated experiment: Configuration and performance[J]. Science of the Total Environment, 2019, 651: 2080-2086.
DOI URL |
[12] | Zhao T, Liu G H, Liu D L, et al. Water recycle system in an artificial closed ecosystem-Lunar Palace 1: Treatment performance and microbial evolution[J]. Science of the Total Environment, 2022, 806, doi: 10.1016/j.scitotenv.2021.151370. |
[13] | 张良长, 李婷, 余青霓, 等. 4人180天集成试验环控生保系统设计及运行概况[J]. 航天医学与医学工程, 2018, 31(2): 273-281. |
Zhang L C, Li T, Yu Q N, et al. Design and operation overview of 4-person 180-day integrated experiment in controlled ecological life support system[J]. Space Medicine & Medical Engineering, 2018, 31(2): 273-281. (in Chinese) | |
[14] |
Liu H, Yao Z K, Fu Y M, et al. Review of research into bioregenerative life support system(s) which can support humans living in space[J]. Life Sciences in Space Research, 2021, 31: 113-120.
DOI PMID |
[15] |
Dong C, Fu Y M, Xie B Z, et al. Element cycling and energy flux responses in ecosystem simulations conducted at the Chinese Lunar Palace-1[J]. Astrobiology, 2017, 17(1): 78-86.
DOI PMID |
[16] | 沈韫赜, 郭双生, 艾为党, 等. 红蓝LED光照强度对密闭生态系统中生菜生长状况及光合速率的影响[J]. 载人航天, 2014, 20(3): 273-278. |
Shen Y Z, Guo S S, Ai W D, et al. Effects of the red and blue LED light intensity on lettuce growthand photosynthetic ratein a closed system[J]. Manned Spaceflight, 2014, 20(3): 273-278. (in Chinese) | |
[17] | El-Nakhel C, Giordano M, Pannico A, et al. Cultivar-specific performance and qualitative descriptors for butterhead salanova lettuce produced in closed soilless cultivation as a candidate salad crop for human life support in space[J]. Life, 2019, 9(3), doi: 10.3390/life9030061. |
[18] | Kim H H, Wheeler R M, Sager J C, et al. Light-emitting diodes as an illumination source for plants: A review of research at Kennedy Space Center[J]. Habitation, 2005, 10(2): 71-78. |
[19] | 晏琼, 刘晓宇, 虞昊安, 等. 植物无土栽培技术研究进展[J]. 中国农业大学学报, 2022, 27(5): 1-11. |
Yan Q, Liu X Y, Yu H A, et al. Recent advances in plant soilless cultivation[J]. Journal of China Agricultural University, 2022, 27(5): 1-11. (in Chinese) | |
[20] | Ellery A. Supplementing closed ecological life support systems with in-situ resources on the moon[J]. Life, 2021, 11(8), doi: 10.3390/life11080770. |
[21] | Keller R, Goli K, Porter W, et al. Cyanobacteria and algal-based biological life support system (BLSS) and planetary surface atmospheric revitalizing bioreactor brief concept review[J]. Life, 2023, 13(3), doi: 10.3390/life13030816. |
[22] |
Gribovskaya I V, Kudenko Y A, Gitelson J I. Element exchange in a water-and gas-closed biological life support system[J]. Advances in Space Research, 1997, 20(10): 2045-2048.
PMID |
[23] | Henninger D L, Tri T O, Packham N J C. NASA’s advanced life support systems human-rated test facility[J]. Advances in Space research, 1996, 18(1/2): 223-232. |
[24] | 郭双生. 美国长期载人航天生命保障地面模拟装置——“BPC”的研究历史、现状与展望[J]. 大自然探索, 1996(1): 34-40. |
Guo S S. A American ground simulator of life-support system for long-term manned space flight-the history, present and prospect of BPC[J]. Discovery of Nature, 1996(1): 34-40. (in Chinese) | |
[25] | 郭双生, 武艳萍. 空间植物栽培技术研究新进展[J]. 航天医学与医学工程, 2016, 29(4): 301-306. |
Guo S S, Wu Y P. Research progress in space plant growing technique[J]. Space Medicine & Medical Engineering, 2016, 29(4): 301-306. (in Chinese) | |
[26] | 谢更新. 月球上第一片绿叶是怎么长出来的[J]. 风流一代, 2023(2): 50-51. |
Xie G X. How did the first green leaf grow on the moon[J]. Merry Generation, 2023(2): 50-51. (in Chinese) | |
[27] | “太空菜园”产出新鲜蔬菜[J]. 饮料工业, 2023, 26(6): 75. |
“Space garden” produces fresh vegetables[J]. Beverage Industry, 2019, 26(6): 75. (in Chinese) | |
[28] | 何春芳. 航天食品加热器设计研究[D]. 北京: 北京理工大学, 2015. |
He C F. Synthesis and design on space food heater[D]. Beijing: Beijing Institute of Technology, 2015. (in Chinese) | |
[29] |
Jiang J H, Zhang M, Bhandari B, et al. Current processing and packing technology for space foods: A review[J]. Critical Reviews in Food Science and Nutrition, 2020, 60(21): 3573-3588.
DOI |
[30] |
Li L Y, Xie B Z, Dong C, et al. Rearing Tenebrio molitor L. (Coleptera: Tenebrionidae) in the “Lunar Palace 1” during a 105-day multi-crew closed integrative BLSS experiment[J]. Life Sciences in Space Research, 2015, 7: 9-14.
DOI URL |
[31] | Hentges D L. Safety analysis and hazard control during food processing and storage in the BIO-Plex interconnecting transfer tunnel[J]. Life Support & Biosphere Science: International Journal of Earth Space, 2000, 7(2): 187-192. |
[32] | Menezes A A, Cumbers J, Hogan J A, et al. Towards synthetic biological approaches to resource utilization on space missions[J]. Journal of the Royal Society Interface, 2015, 12, doi: 10.1098/rsif.2014.0715. |
[33] | 陆月盈, 付玉明, 刘红. 基于图像处理方法的空间站舱室材料表面真菌滋生监测[J]. 载人航天, 2021, 27(2): 190-197. |
Lu Y Y, Fu Y M, Liu H. Monitoring of fungal growth on surface of space station cabin materials based on image processing methods[J]. Manned Spaceflight, 2021, 27(2): 190-197. (in Chinese) | |
[34] | Amalfitano S, Levantesi C, Copetti D, et al. Water and microbial monitoring technologies towards the near future space exploration[J]. Water Research, 2020, 177, doi: 10.1016/j.watres.2020.115787. |
[35] | Urbaniak C, Morrison M D, Thissen J B, et al. Microbial Tracking-2, a metagenomics analysis of bacteria and fungi onboard the international space station[J]. Microbiome, 2022, 10, doi: 10.1186/s40168-022-01293-0. |
[36] |
Ichijo T, Shimazu T, Nasu M S. Microbial monitoring in the international space station and its application on earth[J]. Biological and Pharmaceutical Bulletin, 2020, 43(2): 254-257.
DOI PMID |
[37] | Castro-Wallace S L, Chiu C Y, John K K, et al. Nanopore DNA sequencing and genome assembly on the international space station[J]. Scientific Reports, 2017, 7, doi: 10.1038/s41598-017-18364-0. |
[38] | 辛冰牧, 王珩, 徐冲, 等. 载人航天器环境微生物免培养法检测技术研究进展[J]. 载人航天, 2020, 26(5): 664-670. |
Xin B M, Wang H, Xu C, et al. Research progress of culture-independent monitoring technology for environment microorganisms in manned spacecraft[J]. Manned Spaceflight, 2020, 26(5) : 664-670. (in Chinese) | |
[39] | 韩培, 侯红渠, 樊云龙, 等. LAMP耦合荧光侧向流层析试纸条的空间微生物快速检测技术[J]. 空间科学学报, 2023, 43(2): 302-309. |
Han P, Hou H Q, Fan Y L, et al. Space microbial detection method based on fluorescent LAMP[J]. Chinese Journal of Space Science, 2023, 43(2): 302-309. (in Chinese)
DOI URL |
|
[40] | 姚坤志. 3种盆栽植物对氨气的主动净化[D]. 武汉: 华中农业大学, 2022. |
Yao K Z. Active removal of ammonia through three potted plants[D]. Wuhan: Huazhong Agricultural University, 2022. (in Chinese) | |
[41] | 郭双生, 董文平, 艾为党, 等. 2人30天受控生态生保系统物质流调控技术研究[J]. 载人航天, 2013, 19(5): 67-74. |
Guo S S, Dong W P, Ai W D, et al. Research on material flow regulation technology of 30-day controlled ecological bioprotection system for two people[J]. Manned Spaceflight, 2013, 19(5): 67-74. (in Chinese) | |
[42] | 杨建楼, 孙儒馨, 张兰涛, 等. 载人航天器内菌斑清除装置设计及初步应用验证[J]. 航天器环境工程, 2021, 38(6): 699-706. |
Yang J L, Sun R X, Zhang L T, et al. Design of plaque removal device used in manned spacecraft with preliminary application verification[J]. Spacecraft Environment Engineering, 2021, 38(6): 699-706. (in Chinese) | |
[43] | 杨建楼, 付玉明, 刘红. 载人航天器内腐蚀材料表面原位修护装置设计[J]. 航天器环境工程, 2022, 39(3): 255-261. |
Yang J L, Fu Y M, Liu H. Design of in situ repair device for the microbial corrosion surface material used in manned spacecraft[J]. Spacecraft Environment Engineering, 2022, 39(3): 255-261. (in Chinese) | |
[44] | 郭双生. 我国月球基地受控生态生保系统物质流调控分析研究[J]. 载人航天, 2017, 23(5): 680-687. |
Guo S S. Analytic study on material flow regulation in CELSS of future Chinese lunar base[J]. Manned Spaceflight, 2017, 23(5): 680-687. (in Chinese) | |
[45] |
Bachhav B, de Rossi J, Llanos C D, et al. Cell factory engineering: Challenges and opportunities for synthetic biology applications[J]. Biotechnology and Bioengineering, 2023, 120(9): 2441-2459.
DOI PMID |
[46] | 史硕博, 张翀, 成喜雨, 等. 挑战造物主: 合成生物学使能工具[J]. 合成生物学, 2023, 4(1): 1-4. |
Shi S B, Zhang C, Cheng X Y, et al. Challenging the creator: Enabling tools for synthetic biology[J]. Synthetic Biology Journal, 2023, 4(1): 1-4. (in Chinese) |
[1] | 张泽旭, 高飞宇, 梅洪元, 孟松鹤, 迟海义, 赵嘉龙, 王义宇, 袁帅. 月球及火星等地外天体科考基地建设规划与发展战略研究[J]. 前瞻科技, 2024, 3(1): 49-61. |
[2] | 于登云, 马继楠. 中国深空探测进展与展望[J]. 前瞻科技, 2022, 1(1): 17-27. |
[3] | 王大轶, 李嘉兴, 董天舒, 葛东明. 基于航天器可观测性理论的多源融合自主导航技术[J]. 前瞻科技, 2022, 1(1): 146-158. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京公网安备 11010802038735号