前瞻科技 ›› 2024, Vol. 3 ›› Issue (1): 34-48.DOI: 10.3981/j.issn.2097-0781.2024.01.003
周昶宇1(), 周米玉1, 徐聿升1,2, 童小华1,2,†(
)
收稿日期:
2023-11-21
修回日期:
2024-01-30
出版日期:
2024-03-20
发布日期:
2024-03-27
通讯作者:
†
作者简介:
周昶宇,博士。主要从事探地雷达信号处理、阵列信号处理及其在月球熔岩管探测方面的应用等研究。电子信箱:23310175@tongji.edu.cn。基金资助:
ZHOU Changyu1(), ZHOU Miyu1, XU Yusheng1,2, TONG Xiaohua1,2,†(
)
Received:
2023-11-21
Revised:
2024-01-30
Online:
2024-03-20
Published:
2024-03-27
Contact:
†
摘要:
月球的熔岩管洞穴具有天然的地下管道结构,能够在强辐射、大温差和频繁陨石撞击等月面高风险环境中提供良好的庇护,成为了建立月球科研站等地外基地的必然选择。而随着月面形貌勘察重建技术的不断进展,高精度的形貌勘察手段和高精细的三维形貌模型可以为月球熔岩管洞穴的探测与应用潜力的评估提供强有力的支撑。文章总结了人类在月球探测的不同阶段的主要任务,以及熔岩管洞穴与未来月球基地选址和建设的关系,并对中国目前熔岩管洞穴探测的研究现状进行了简要分析。同时,借助对月面熔岩管洞穴的常用探测手段的分析,对月面形貌勘察重建技术在熔岩管探测中的应用现状、发展需求和挑战进行了讨论。最后,对未来月球熔岩管的探测进行了展望并提出建议,以期推动月球熔岩管洞穴探测和相关科学研究的全球发展,为人类命运共同体的太空征程而共同努力。
周昶宇, 周米玉, 徐聿升, 童小华. 月面形貌勘察重建及其在熔岩管探测中的应用与展望[J]. 前瞻科技, 2024, 3(1): 34-48.
ZHOU Changyu, ZHOU Miyu, XU Yusheng, TONG Xiaohua. Lunar Topographic Survey and Reconstruction and Its Application in Lava Tube Exploration[J]. Science and Technology Foresight, 2024, 3(1): 34-48.
探测方法 | 分辨率/m | 最大探测深度/km | 搭载平台 | 是否实现对熔岩管的探测 |
---|---|---|---|---|
重力探测 | 3×104 | 60.00 | 轨道器 | 已实现 |
雷达探测 | 100 | 5.00 | 轨道器 | 已实现 |
探地雷达 | 1~5 | 0.05 | 着陆器或巡视器 | 尚未实现 |
表1 熔岩管探测方法对比
Table 1 Comparison of lunar lava tube detection methods
探测方法 | 分辨率/m | 最大探测深度/km | 搭载平台 | 是否实现对熔岩管的探测 |
---|---|---|---|---|
重力探测 | 3×104 | 60.00 | 轨道器 | 已实现 |
雷达探测 | 100 | 5.00 | 轨道器 | 已实现 |
探地雷达 | 1~5 | 0.05 | 着陆器或巡视器 | 尚未实现 |
轨道器名称 | 国家 | 发射年份 | 光学传感器 | 空间分辨率/m |
---|---|---|---|---|
克莱门汀(Clementine) | 美国 | 1994 | 可见光相机 高分辨率相机 | 200 7~20 |
月亮女神(SELENE/Kaguya) | 日本 | 2007 | 地形相机 | 10 |
嫦娥一号(CE-1) | 中国 | 2007 | 立体相机 | 120 |
月船一号(Chandrayaan-1) | 印度 | 2008 | 地形测绘相机 | 5 |
月球勘测轨道器(LRO) | 美国 | 2009 | 窄角相机 宽角相机 | 0.5~2.0 100 |
嫦娥二号(CE-2) | 中国 | 2010 | 立体相机 | 1.5~7 |
月船二号(Chandrayaan-2) | 印度 | 2019 | 高分辨率相机 | 0.32 |
嫦娥七号(CE-7) | 中国 | 计划 | 立体相机 | 0.5 |
表2 国内外主要月球轨道器及其搭载的遥感影像数据
Table 2 Main lunar orbiters and their remote sensing image data in China and abroad
轨道器名称 | 国家 | 发射年份 | 光学传感器 | 空间分辨率/m |
---|---|---|---|---|
克莱门汀(Clementine) | 美国 | 1994 | 可见光相机 高分辨率相机 | 200 7~20 |
月亮女神(SELENE/Kaguya) | 日本 | 2007 | 地形相机 | 10 |
嫦娥一号(CE-1) | 中国 | 2007 | 立体相机 | 120 |
月船一号(Chandrayaan-1) | 印度 | 2008 | 地形测绘相机 | 5 |
月球勘测轨道器(LRO) | 美国 | 2009 | 窄角相机 宽角相机 | 0.5~2.0 100 |
嫦娥二号(CE-2) | 中国 | 2010 | 立体相机 | 1.5~7 |
月船二号(Chandrayaan-2) | 印度 | 2019 | 高分辨率相机 | 0.32 |
嫦娥七号(CE-7) | 中国 | 计划 | 立体相机 | 0.5 |
图4 智海深坑区域熔岩管洞穴的立体遥感影像与三维形貌重建结果
Fig. 4 Stereoscopic remote sensing image and three-dimensional topographic reconstruction results of lava tubes in Mare Ingenii Pit region
[1] | 陈俊勇, 章传银, 党亚民. 月球航天探测和月球测绘[J]. 测绘学报, 2005, 34(3): 189-195. |
Chen J Y, Zhang C Y, Dang Y M. Lunar spatial exploration surveying and mapping[J]. Acta Geodaetica et Cartographica Sinica, 2005, 34(3): 189-195. (in Chinese) | |
[2] | 欧阳自远, 邹永廖, 李春来, 等. 月球某些资源的开发利用前景[J]. 地球科学, 2002(5): 498-503. |
Ouyang Z Y, Zou Y L, Li C L, et al. Prospect of exploration and utilization of some lunar resources[J]. Earth Science, 2002(5): 498-503. (in Chinese) | |
[3] | 吴伟仁, 刘继忠, 唐玉华, 等. 中国探月工程[J]. 深空探测学报, 2009, 6(5): 405-416. |
Wu W R, Liu J Z, Tang Y H, et al. China lunar exploration program[J]. Journal of Deep Space Exploration, 2019, 6(5): 405-416. (in Chinese)
DOI |
|
[4] | 刘建忠, 李雄耀, 朱凯, 等. 月球原位资源利用及关键科学与技术问题[J]. 中国科学基金, 2022, 36(6): 907-918. |
Liu J Z, Li X Y, Zhu K, et al. Key Science and technology issues of lunar in situ resource utilization[J]. Bulletin of National Natural Science Foundation of China, 2022, 36(6): 907-918. (in Chinese) | |
[5] |
欧阳自远. 我国月球探测的总体科学目标与发展战略[J]. 地球科学进展, 2004, 19(3): 351-358.
DOI |
Ouyang Z Y. Scientific objectives of Chinese lunar exploration project and development strategy[J]. Advances in Earth Science, 2004, 19(3): 351-358. (in Chinese) | |
[6] | 赵洋, 李飞, 吴波, 等. 嫦娥四号探测器着陆区精确选择与评价系统设计[J]. 航天器工程, 2019, 28(4): 22-30. |
Zhao Y, Li F, Wu B, et al. Precise landing site selection and evaluation system design for Chang’e-4 probe[J]. Spacecraft Engineering, 2019, 28(4): 22-30. (in Chinese) | |
[7] |
Burke J. Lunar polar orbiter: A global survey of the Moon[J]. Acta Astronautica, 1977, 4(7-8): 907-920.
DOI URL |
[8] |
Nozette S, Rustan P, Pleasance L P, et al. The clementine mission to the Moon: Scientific overview[J]. Science, 1994, 266(5192): 1835-1839.
PMID |
[9] |
Robinson M S, Brylow S M, Tschimmel M, et al. Lunar reconnaissance orbiter camera (LROC) instrument overview[J]. Space Science Reviews, 2010, 150(1): 81-124.
DOI URL |
[10] | Haruyama J, Hara S, Hioki K, et al. Lunar global digital terrain model dataset produced from SELENE (Kaguya) terrain camera stereo observations[C]// Proceedings of the 43rd Lunar and Planetary Science Conference. Houston: Lunar and Planetary Institute, 2012. |
[11] | Goswami M J N, Annadurai M. Chandrayaan-1: India’s first planetary science mission to the Moon[J]. Current Science, 2009, 96: 486-491. |
[12] | 欧阳自远. 嫦娥一号卫星的初步科学成果与嫦娥二号卫星的使命[J]. 航天器工程, 2010, 19(5): 1-6. |
Ouyang Z Y. Science results of Chang’e-1 lunar orbiter and mission goals of Chang’e-2[J]. Spacecraft Engineering[J]. 2010, 19(5):1-6. (in Chinese) | |
[13] |
Zuber M T, Smith D E, Lemoine F G, et al. The shape and internal structure of the Moon from the clementine mission[J]. Science, 1994, 266(5192): 1839-1843.
PMID |
[14] | Archinal B A, Rosiek M, Kirk R, et al. The unified lunar control network 2005[R]. Reston: U.S. Geological Survey, 2006. |
[15] | 平劲松, 黄倩, 鄢建国, 等. 基于嫦娥一号卫星激光测高观测的月球地形模型CLTM-s01[J]. 中国科学(G辑: 物理学力学天文学), 2008, 38(11): 1601-1612. |
Ping Jinsong, Huang Qian, Yan Jianguo, et al. Lunar topographic model based on the laser altimetry observation of Chang’e-1 satellite[J]. Science in China: Physics, Mechanics & Astronomy, 2008, 38(11): 1601-1612. (in Chinese) | |
[16] | 李春来, 刘建军, 任鑫, 等. 基于嫦娥二号立体影像的全月高精度地形重建[J]. 武汉大学学报(信息科学版), 2018, 43(4): 485-495. |
Li C L, Liu J J, Ren X, et al. Lunar global high-precision terrain reconstruction based on Chang’e-2 stereo images[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 485-495. (in Chinese) | |
[17] | Ding L, Zhou R, Yuan Y, et al. A 2-year locomotive exploration and scientific investigation of the lunar farside by the Yutu-2 rover[J]. Science Robotics, 2022, 7(62), doi: 10.1126/scirobotics.abj6660. |
[18] | 裴照宇, 刘继忠, 王倩, 等. 月球探测进展与国际月球科研站[J]. 科学通报, 2020, 65(24): 2577-2586. |
Pei Z Y, Liu J Z, Wang Q, et al. Overview of lunar exploration and international lunar research station[J]. Chinese Science Bulletin, 2020, 65(24): 2577-2586. (in Chinese) | |
[19] | Wagner R V, Robinson M S. Lunar pit morphology: Implications for exploration[J]. Journal of Geophysical Research: Planets, 2022, 127(8), doi:10.1029/2022JE007328. |
[20] |
Wagner R V, Robinson M S. Distribution, formation mechanisms, and significance of lunar pits[J]. Icarus, 2014, 237: 52-60.
DOI URL |
[21] | 肖龙, 黄俊, 赵佳伟, 等. 月面熔岩管洞穴探测的意义与初步设想[J]. 中国科学: 物理学力学天文学, 2018, 48(11), doi: 10.1360/SSPMA2018-00025. |
Xiao L, Huang J, Zhao J W, et al. Significance and preliminary proposal for exploring the lunar lava tubes[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2018, 48(11), doi: 10.1360/SSPMA2018-00025. (in Chinese) | |
[22] | Kaku T, Haruyama J, Miyake W, et al. Detection of intact lava tubes at Marius Hills on the Moon by SELENE (Kaguya) Lunar Radar Sounder[J]. Geophysical Research Letters, 2017, 44(20): 151-161. |
[23] |
Kobayashi T, Kim J H, Lee S R, et al. Nadir detection of lunar lava tube by Kaguya Lunar Radar Sounder[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(9): 7395-7418.
DOI URL |
[24] | Donini E, Carrer L, Gerekos C, et al. An unsupervised fuzzy system for the automatic detection of candidate lava tubes in radar sounder data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60, doi: 10.1109/TGRS.2021.3062753. |
[25] | Esmaeili S, Kruse S, Jazayeri S, et al. Resolution of lava tubes with ground penetrating radar: The TubeX project[J]. Journal of Geophysical Research: Planets, 2020, 125(5), doi: 10.1029/2019JE006138. |
[26] | Ding J H, Xie G X, Guo L L, et al. Karst cave as terrestrial simulation platform to test and design human base in lunar lava tube[J]. Space: Science and Technology, 2022, doi: 10.34133/2022/9875780. |
[27] | 詹涛, 张海燕, 张俊, 等. 镜泊湖世界地质公园熔岩隧道分布特征及成因[J]. 哈尔滨师范大学自然科学学报, 2017, 33(5): 87-93. |
Zhan T, Zhang H Y, Zhang J, et al. The distribution and formation of lava tubes in Jingpohu global geopark[J]. Natural Science Journal of Harbin Normal University, 2017, 33(5): 87-93. (in Chinese) | |
[28] | 黄毓铭, 张晓峰, 谢尚平, 等. 综合物探方法在南宁地铁溶洞探测中的应用[J]. 地球物理学进展, 2017, 32(3): 1352-1359. |
Huang Y M, Zhang X F, Xie S P, et al. Application of integrated geophysical method to Karst cave exploration of metro engineering in Nanning[J]. Progress in Geophysics, 2017, 32(3): 1352-1359. (in Chinese) | |
[29] |
Chappaz L, Sood R, Melosh H J, et al. Evidence of large empty lava tubes on the Moon using GRAIL gravity[J]. Geophysical Research Letters, 2017, 44(1): 105-112.
DOI URL |
[30] | Zhu K, Yang M, Yan X Y, et al. GRAIL gravity gradients evidence for a potential lava tube at Marius Hills on the Moon[J]. Icarus, 2024, 408, doi: 10.1016/j.icarus.2023.115814. |
[31] | 刘进军, 郭建成, 蒋峥. 论月球基地的建设与技术[J]. 卫星与网络, 2021(8): 56-65. |
Liu J J, Guo J C, Jiang Z. Discussion on lunar basement construction and techniques[J]. Satellie and Network, 2021(8): 56-65. (in Chinese) | |
[32] | 石耀霖, 胡才博, 张怀, 等. 对我国月球科研站开展特定固体月球动力学研究的一些思考[J]. 中国科学基金, 2022, 36(6): 895-906. |
Shi Y L, Hu C B, Zhang H, et al. Some thoughts on the special research of solid lunar dynamics in China’s lunar scientific research station[J]. Bulletin of National Natural Science Foundation of China, 2022, 36(6): 895-906. (in Chinese) | |
[33] | Carrer L, Bruzzone L. Analysis of lava tubes’ roughness and radar near-nadir regime backscattering properties[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, doi: 10.1109/TGRS.2023.3239987. |
[34] | 徐青, 耿迅. 地外天体形貌测绘研究现状与展望[J]. 深空探测学报(中英文), 2022, 9(3): 300-310. |
Xu Q, Geng X. Recent advances and prospects in extraterrestrial planets mapping[J]. Journal of Deep Space Exploration, 2022, 9(3): 300-310. (in Chinese)
DOI |
|
[35] | Arya A S, Rajasekhar R, Thangjam G, et al. Detection of potential site for future human habitability on the Moon using Chandrayaan-1 data[J]. Current Science, 2011, 100(4): 524-529. |
[36] | Scholten F, Oberst J, Matz K D, et al. GLD100: The near‐global lunar 100 m raster DTM from LROC WAC stereo image data[J]. Journal of Geophysical Research: Planets, 2012, 117(E12), doi:10.1029/2011JE003926. |
[37] | 李春来. 嫦娥一号三线阵CCD数据摄影测量处理及全月球数字地形图[J]. 测绘学报, 2013, 42(6): 853-860, 868. |
Li C L. Photogrammetric processing and lunar global topographic map form the Chang’e-1 3 line-array CCD data[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(6): 853-860, 868. (in Chinese) | |
[38] | DLR. DTM generation by the ESA Lunar Lander project for the characterization of potential landing site[EB/OL]. (2021-02-18)[2024-01-25]. http://wms.lroc.asu.edu/lroc/view_rdr/NAC_DTM_ESALL_CR1. |
[39] |
Araki H, Tazawa S, Noda H, et al. Lunar global shape and polar topography derived from Kaguya-LALT laser altimetry[J]. Science, 2009, 323(5916): 897-900.
DOI PMID |
[40] | 李春来, 刘建军, 任鑫, 等. 嫦娥一号图像数据处理与全月球影像制图[J]. 中国科学: 地球科学, 2010, 40(3): 294-306. |
Li C L, Liu J J, Ren X, et al. The global image of the Moon by the Chang’e-1: Data processing and lunar cartography[J]. Scientia Sinica (Terrae), 2010, 40(3): 294-306. (in Chinese) | |
[41] | Smith D E, Zuber M T, Neumann G A, et al. Initial observations from the lunar orbiter laser altimeter (LOLA)[J]. Geophysical Research Letters, 2010, 37(18), doi:10.1029/2010GL043751. |
[42] |
Martellato E, Foing B H, Benkhoff J. Numerical modelling of impact crater formation associated with isolated lunar skylight candidates on lava tubes[J]. Planetary and Space Science, 2013, 86: 33-44.
DOI URL |
[43] |
于登云, 马继楠. 中国深空探测进展与展望[J]. 前瞻科技, 2022, 1(1): 17-27.
DOI |
Yu D Y, Ma J N. Progress and prospect of deep space exploration in China[J]. Science and Technology Foresight, 2022, 1(1): 17-27. (in Chinese)
DOI |
[1] | 陈善广, 王春慧. 月面人机联合探测的人因学问题[J]. 前瞻科技, 2024, 3(1): 22-33. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京公网安备 11010802038735号