前瞻科技 ›› 2022, Vol. 1 ›› Issue (2): 198-211.DOI: 10.3981/j.issn.2097-0781.2022.02.015
李铁风†(
), 薛耀庭, 阮东瑞, 周方浩, 曹许诺, 赵沛, 周昊飞, 高扬
收稿日期:2022-05-22
修回日期:2022-06-02
出版日期:2022-06-20
发布日期:2022-08-18
通讯作者:
李铁风
作者简介:李铁风,教授,博士研究生导师。主要从事软物质与智能机器人系统研究。国家杰出青年科学基金、浙江省杰出青年科学基金获得者。获中国青年五四奖章、中国科协青年人才托举工程、科学探索奖(前沿交叉领域)、麻省理工科技评论科技创新35人(MIT TR35-China)等荣誉。研究成果“自供电软机器人成功挑战马里亚纳海沟”入选“2021年度中国科学十大进展”。发表Nature封面论文,Science Advances等研究论文60余篇。电子信箱: litiefeng@zju.edu.cn。
基金资助:
LI Tiefeng(
), XUE Yaoting, RUAN Dongrui, ZHOU Fanghao, CAO Xunuo, ZHAO Pei, ZHOU Haofei, GAO Yang
Received:2022-05-22
Revised:2022-06-02
Online:2022-06-20
Published:2022-08-18
Contact:
LI Tiefeng
摘要:
当“上九天揽月,下五洋捉鳖”的梦想逐步成为中国科学技术发展的现实足迹,深海、深空探索的新任务和设想也变得更具挑战,需要创新原理和技术的支撑。文章综述了极端环境作业装备以及软体机器人的发展概况,介绍了软硬融合结构机器人在马里亚纳海沟万米深海开展的深潜实验的系统原理与设计方法,并提出基于该原理的木卫二深海探索概念,为深海深空探测技术发展提供参考。
李铁风, 薛耀庭, 阮东瑞, 周方浩, 曹许诺, 赵沛, 周昊飞, 高扬. 极端环境软体机器人应用与展望——从马里亚纳海沟初探到木卫二畅想[J]. 前瞻科技, 2022, 1(2): 198-211.
LI Tiefeng, XUE Yaoting, RUAN Dongrui, ZHOU Fanghao, CAO Xunuo, ZHAO Pei, ZHOU Haofei, GAO Yang. Application and Prospect of Soft Robots for Extreme Environments: From Preliminary Mariana Trench Exploration to Some Thoughts on Jupiter II (Europa)[J]. Science and Technology Foresight, 2022, 1(2): 198-211.
| [1] |
Armbrust E, Palumbi S. Uncovering hidden worlds of ocean biodiversity[J]. Science, 2015, 348(6237): 865-867.
DOI URL |
| [2] |
Satja S, Joseph C, Edin O, et al. Underwater manipulators: A review[J]. Ocean Engineering, 2018, 163(1): 431-450.
DOI URL |
| [3] | 胡庆玉, 舒国平, 冯朝. 深海AUV发展趋势研究[J]. 数字海洋与水下攻防, 2018, 1(1): 77-80. |
| [4] |
Wynn R B, Huvenne V, Bas T, et al. Autonomous Underwater Vehicles (AUVs): Their past, present and future contributions to the advancement of marine geoscience[J]. Marine Geology, 2014, 352: 451-468.
DOI URL |
| [5] | 封锡盛, 李一平, 徐会希, 等. 深海自主水下机器人发展及其在资源调查中的应用[J]. 中国有色金属学报, 2021, 31(10): 2746-2756. |
| [6] | 崔维成, 姜哲, 王芳, 等. 2020年深海潜水器热点回眸[J]. 科技导报, 2021, 39(1): 126-136. |
| [7] | 姜哲, 崔维成. 全海深潜水器水动力学研究最新进展[J]. 中国造船, 2015, 56(4): 188-199. |
| [8] |
Quillin K J. Kinematic scaling of locomotion by hydrostatic animals: Ontogeny of peristaltic crawling by the earthworm lumbricus terrestris[J]. Journal of Experimental Biology, 1999, 202(6): 661-674.
DOI URL |
| [9] | 王雅琳, 刘都群, 杨依然. 2019年水下无人系统发展综述[J]. 无人系统技术, 2020, 3(1): 55-59. |
| [10] |
Galloway K, Becker P, Phillips B, et al. Soft robotic grippers for biological sampling on deep reefs[J]. Soft Robotics, 2016, 3(1): 23-33.
PMID |
| [11] |
Kurumaya S, Phillips B T, Becker K P, et al. A modular soft robotic wrist for underwater manipulation[J]. Soft Robotics, 2018, 5(4): 399-409.
DOI URL |
| [12] |
Vogt D M, Becker K P, Phillips B T, et al. Shipboard design and fabrication of custom 3D-printed soft robotic manipulators for the investigation of delicate deep-sea organisms[J]. PLOS One, 2018, doi: 10.1371/journal.pone.0200386.
DOI |
| [13] |
Kuppuswamy N, Carbajal J. Learning a curvature dynamic model of an octopus-inspired soft rRobot arm using flexure sensors[J]. Procedia Computer Science, 2011, 7: 294-296.
DOI URL |
| [14] |
Licht S, Collins E, Mendes M L, et al. Stronger at depth: Jamming grippers as deep sea sampling tools[J]. Soft Robotics, 2017, 4(4): 305-316.
DOI URL |
| [15] |
Chen L, Bi S, Cai Y, et al. Design and experimental research on a bionic robot fish with tri-dimensional soft pectoral fins inspired by Cownose Ray[J]. Journal of Marine Science and Engineering, 2022, doi: 10.3390/jmse10040537.
DOI |
| [16] |
Li G, Chen X, Zhou F, et al. Self-powered soft robot in the Mariana Trench[J]. Nature, 2021, 591(7848): 66-71.
DOI URL |
| [17] |
Wang Y, Yang X, Chen Y, et al. A biorobotic adhesive disc for underwater hitchhiking inspired by the remora suckerfish[J]. Science Robotics, 2017, doi: 10.1126/scirobotics.aan8072.
DOI |
| [18] |
Li L, Wang S, Zhang Y, et al. Aerial-aquatic robots capable of crossing the air-water boundary and hitchhiking on surfaces[J]. Science Robotics, 2022, doi: 10.1126/scirobotics.abm6695.
DOI |
| [19] |
Byun J, Park M, Baek S, et al. Underwater maneuvering of robotic sheets through buoyancy-mediated active flutter[J]. Science Robotics, 2021, doi: 10.1126/scirobotics.abe0637.
DOI |
| [20] | Wang K, Shen Y, Yang Y, et al. Morphology and genome of a snailfish from the Mariana Trench provide insights into deep-sea adaptation[J]. Nature Ecology & Evolution, 2019, 3(5): 823-833. |
| [21] | 中国科学院水生生物研究所. 狮子鱼为您揭开深海7000米的生命奥秘[EB/OL]. [2020-07-06]. http://www.ihb.cas.cn/sq90/Photostory/202007/t20200706_5619392.html. |
| [22] |
Birch F. Finite elastic strain of cubic crystals[J]. Physical Review, 1947, 71: 809-824.
DOI URL |
| [23] | Holzapfel W. Equations of state for solids under strong compression[J]. High Pressure Research: An International Journal, 1998, 16: 81-126. |
| [24] |
Gao Y, Cao T, Cellini F, et al. Ultrahard carbon film from epitaxial two-layer graphene[J]. Nature Nanotechnology, 2018, 13(2): 133-138.
DOI URL |
| [25] |
Vattrén A, Denoual C. Polymorphism of iron at high pressure: A 3D phase-field model for displacive transitions with finite elastoplastic deformations[J]. Journal of the Mechanics and Physics of Solids, 2016, 92: 1-27.
DOI URL |
| [26] | 黄艳萍, 黄晓丽, 崔田. 原位高压测试技术在高压结构及性质研究中的应用[J]. 物理, 2019, 48(10): 650-661. |
| [27] |
Zhou X, Feng Z, Zhu L, et al. High pressure strengthening in ultra-fine-grained metals[J]. Nature, 2020, 579: 67-72.
DOI URL |
| [28] | Klimczak M, Cecot W. MsFEM upscaling for the coupled thermo-mechanical problem[C]// 21st International Conference on Computational Science(ICCS). Cham:Springer, 2021: 562-575. |
| [29] | Özgün Ö. Finite element modeling of electromagnetic radiation[D]. Ankara: Middle East Technical University, 2007. |
| [30] |
Yin L, Jin Y, Leygraf C, et al. A FEM model for investigation of micro-galvanic corrosion of Al alloys and effects of deposition of corrosion products[J]. Electrochimica Acta, 2016, 192: 310-318.
DOI URL |
| [31] |
Ren X, Shi P, Zhang W, et al. Swamps of hydrogen in equiatomic FeCuCrMnMo alloys: First-principles calculations[J]. Acta Materialia, 2019, 180: 189-198.
DOI |
| [32] |
Fu J, Chen Y, Fang J, et al. Molecular dynamics simulations of high-energy radiation damage in W and W-Re alloys[J]. Journal of Nuclear Materials, 2018, 524: 9-20.
DOI URL |
| [33] |
Li H, Qin Y, Yang Y, et al. The evolution of interaction between grain boundary and irradiation-induced point defects: Symmetric tilt GB in tungsten[J]. Journal of Nuclear Materials, 2018, 500: 42-49.
DOI URL |
| [34] |
Chakraborty S, Zhang J, Ghosh S. Accelerated molecular dynamics simulations for characterizing plastic deformation in crystalline materials with cracks[J]. Computational Materials Science, 2016, 121: 23-34.
DOI URL |
| [35] |
Gao S, Fivel M, Ma A, et al. 3D discrete dislocation dynamics study of creep behavior in Ni-base single crystal superalloys by a combined dislocation climb and vacancy diffusion model[J]. Journal of the Mechanics and Physics of Solids, 2017, 102: 209-223.
DOI URL |
| [36] |
Prasad Reddy G V, Robertson C, Déprés C, et al. Effect of grain disorientation on early fatigue crack propagation in face-centred-cubic polycrystals: A three-dimensional dislocation dynamics investigation[J]. Acta Materialia, 2013, 61(14): 5300-5310.
DOI URL |
| [37] |
Weng B, Song Z, Zhu R, et al. Simple descriptor derived from symbolic regression accelerating the discovery of new perovskite catalysts[J]. Nature Communications, 2020, doi: 10.1038/s41467-020-17263-9.
DOI |
| [38] |
Yang C, Kim Y, Ryu S, et al. Prediction of composite microstructure stress-strain curves using convolutional neural networks[J]. Materials and Design, 2020, doi: 10.1016/j.matdes.2020.108509.
DOI |
| [39] | 李想, 严子铭, 柳占立. 机器学习与计算力学的结合及应用初探[J]. 科学通报, 2019, 64(7): 635-648. |
| [40] | 李想, 严子铭, 柳占立, 等. 基于仿真和数据驱动的先进结构材料设计[J]. 力学进展, 2021, 51(1): 82-105. |
| [41] |
Mao Y, He Q, Zhao X. Designing complex architectured materials with generative adversarial networks[J]. Science Advances, 2020, doi: 10.1126/sciadv.aaz4169.
DOI |
| [42] |
Culberg R, Schroeder D M, Gregor Steinbrügge. Double ridge formation over shallow water sills on Jupiter,s moon Europa[J]. Nature Communications, 2022, doi: 10.1038/s41467-022-29458-3.
DOI |
| [43] |
Hofstadter M, Simon A, Atreya S, et al. Uranus and Neptune missions: A study in advance of the next Planetary Science Decadal Survey[J]. Planetary and Space Science, 2019, doi: 10.1016/j.pss.2019.06.004.
DOI |
| [44] |
Blanc M, Prieto-Ballesteros O, Andr N, et al. Joint Europa Mission (JEM): A multi-scale study of Europa to characterize its habitability and search for extant life[J]. Planetary and Space Science, 2021, doi: 10.1016/j.pss.2020.104960.
DOI |
| [45] | 高博宇, 陈忠贵, 周文艳. 国外木星探测任务进展与分析[J]. 航天器工程, 2021, 30(5): 107-114. |
| [46] |
Atchison J A, Ozimek M T, Kantsiper B L, et al. Trajectory options for the DART mission[J]. Acta Astronautica, 2016, 123: 330-339.
DOI URL |
| [47] |
姚智晓, 晁超越, 郭浩语, 等. 火星壤采样探测技术研究进展与发展趋势[J]. 机械工程学报, 2021, 57(13): 83-101.
DOI |
| No related articles found! |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||

