前瞻科技 ›› 2025, Vol. 4 ›› Issue (3): 29-41.DOI: 10.3981/j.issn.2097-0781.2025.03.003
收稿日期:2024-12-29
修回日期:2025-02-16
出版日期:2025-09-20
发布日期:2025-10-17
通讯作者:
†
作者简介:石展耀,博士研究生,主要从事水生态结构和水生态演变等研究。电子信箱:zhany0115@gmail.com。
SHI Zhanyao(
), HUO Shouliang(
)
Received:2024-12-29
Revised:2025-02-16
Online:2025-09-20
Published:2025-10-17
Contact:
†
摘要:
建设跨流域调水工程是世界上解决水资源分配不均的重要手段之一。文章通过对国内外的跨流域调水工程进行介绍,总结了跨流域调水工程造成的水生态环境影响,包括对常规水质指标、溶解性有机物、水体富营养化和水体污染物的水环境影响,以及对生物入侵和生物多样性的水生态影响。梳理了水生态结构研究方法,为从生态结构机理方面进一步探究提供了理论基础。提出了跨流域调水工程的水生态学研究趋势和发展建议。
石展耀, 霍守亮. 跨流域调水工程水生态环境影响研究现状与展望[J]. 前瞻科技, 2025, 4(3): 29-41.
SHI Zhanyao, HUO Shouliang. Research Status and Prospect of Water Ecological and Environmental Impacts of Inter-basin Water Diversion Projects[J]. Science and Technology Foresight, 2025, 4(3): 29-41.
| 调水工程 | 调水起点 | 调水终点 | 主要作用 |
|---|---|---|---|
| 科罗拉多河—大汤普逊河调水工程 | 科罗拉河上游 | 大汤普逊河 | 解决科罗拉多州东部地区长期干旱缺水的问题 |
| 澳大利亚雪山调水工程 | 澳大利亚东部雪河 | 墨累河、蒂莫特河 | 解决电力、粮食和畜产品需求增加的问题 |
| 美国加州北水南调工程 | 费瑟河 | 佩里斯湖 | 解决加州南北水资源分布不均的问题 |
| 苏联东水西调工程 | 阿姆渡河和锡尔河 | 咸海 | 支持苏联在中亚地区的棉花种植 |
| 巴基斯坦西水东调工程 | 印度河、杰赫勒姆河和杰纳布河 | 萨特莱杰河、比阿斯河和拉维河 | 解决巴印水资源短缺问题,促进经济发展,减少国际争端等 |
| 加拿大魁北克调水工程 | 卡尼亚皮斯科河和伊斯特梅恩河 | 拉格朗德河 | 满足加拿大魁北克省的电力需求,并将剩余电力出口到美国东北部地区 |
| 以色列北水南调工程 | 以色列东北部的加利利海 | 以色列中南部内格夫沙漠 | 解决以色列南部地区的水资源短缺问题,利于农业种植 |
| 引滦入津工程 | 河北迁西县大黑汀水库 | 天津芥园、凌庄、新开河3个水厂 | 解决天津水源短缺问题,改善水质 |
| 引黄济青工程 | 黄河下游 | 青岛河东水厂 | 解决青岛水资源短缺的问题,促进青岛的工农业发展 |
| 中国南水北调工程中线 | 汉江中上游的丹江口水库 | 北京团城湖和天津外环河 | 为河南、河北、北京和天津等省市提供生产生活和工农业用水 |
| 中国南水北调工程东线 | 江苏扬州江都水利枢纽 | 山东米山水库、大屯水库,天津北大港水库 | 缓解天津、山东和河北等地水资源短缺 |
| 牛栏江—滇池补水工程 | 云南德泽水库 | 滇池 | 改善滇池水环境和水资源条件,并具备为昆明市应急供水的能力 |
| 滇中引水工程 | 丽江石鼓镇望城坡金沙江 | 红河州新坡背 | 改善滇中地区的水资源状况,促进区域经济社会发展 |
| 引江济太工程 | 长江 | 太湖 | 增加太湖水资源供给,改善水环境及提高水体自净能力 |
| 引江济淮工程 | 长江 | 淮河 | 城乡供水、航道建设、灌溉补水和改善生态环境等 |
表1 世界著名调水工程汇总
Table 1 Summary of famous water diversion projects in the world
| 调水工程 | 调水起点 | 调水终点 | 主要作用 |
|---|---|---|---|
| 科罗拉多河—大汤普逊河调水工程 | 科罗拉河上游 | 大汤普逊河 | 解决科罗拉多州东部地区长期干旱缺水的问题 |
| 澳大利亚雪山调水工程 | 澳大利亚东部雪河 | 墨累河、蒂莫特河 | 解决电力、粮食和畜产品需求增加的问题 |
| 美国加州北水南调工程 | 费瑟河 | 佩里斯湖 | 解决加州南北水资源分布不均的问题 |
| 苏联东水西调工程 | 阿姆渡河和锡尔河 | 咸海 | 支持苏联在中亚地区的棉花种植 |
| 巴基斯坦西水东调工程 | 印度河、杰赫勒姆河和杰纳布河 | 萨特莱杰河、比阿斯河和拉维河 | 解决巴印水资源短缺问题,促进经济发展,减少国际争端等 |
| 加拿大魁北克调水工程 | 卡尼亚皮斯科河和伊斯特梅恩河 | 拉格朗德河 | 满足加拿大魁北克省的电力需求,并将剩余电力出口到美国东北部地区 |
| 以色列北水南调工程 | 以色列东北部的加利利海 | 以色列中南部内格夫沙漠 | 解决以色列南部地区的水资源短缺问题,利于农业种植 |
| 引滦入津工程 | 河北迁西县大黑汀水库 | 天津芥园、凌庄、新开河3个水厂 | 解决天津水源短缺问题,改善水质 |
| 引黄济青工程 | 黄河下游 | 青岛河东水厂 | 解决青岛水资源短缺的问题,促进青岛的工农业发展 |
| 中国南水北调工程中线 | 汉江中上游的丹江口水库 | 北京团城湖和天津外环河 | 为河南、河北、北京和天津等省市提供生产生活和工农业用水 |
| 中国南水北调工程东线 | 江苏扬州江都水利枢纽 | 山东米山水库、大屯水库,天津北大港水库 | 缓解天津、山东和河北等地水资源短缺 |
| 牛栏江—滇池补水工程 | 云南德泽水库 | 滇池 | 改善滇池水环境和水资源条件,并具备为昆明市应急供水的能力 |
| 滇中引水工程 | 丽江石鼓镇望城坡金沙江 | 红河州新坡背 | 改善滇中地区的水资源状况,促进区域经济社会发展 |
| 引江济太工程 | 长江 | 太湖 | 增加太湖水资源供给,改善水环境及提高水体自净能力 |
| 引江济淮工程 | 长江 | 淮河 | 城乡供水、航道建设、灌溉补水和改善生态环境等 |
| 取样层次 | 技术发展 | 主要特点 |
|---|---|---|
| 水样 | Niskin瓶 无人机技术 自动取水 | 低采样成本、高保存成本、低运输成本,运输过程中的降解不利于DNA保存。适合短距离、少点位采样 |
| 滤膜 | 背包式Smith-Root eDNA过滤器 环境样本处理器 背包式现场水生eDNA采样套装 Tri-mode eDNA采集器 水下自动取样器 水下自助机器人Clio与Supr采集器 Dartmouth Ocean Technologies Inc.公司的eDNA采样器 大容量 eDNA采样器 自动基因采集器 原位自主生物采集器 多点原位核酸采集器 被动吸附 | 极大地降低了运输负担,更利于DNA的保存,但仍需要运输滤膜,不能实时监测等。适合长距离、多点位采样 |
| 基因序列 | 环境样本处理器 背包式DNA检测仪+手持式定量聚合酶链式反应(Quantitative Polymerase Chain Reaction, qDCR)设备 自主微生物传感器 集成原位基因分析仪 基于牛顿纳米孔技术的移动实验室 | 几乎没有运输样品的负担,可以连续监测,但是造价昂贵。适合需要连续监测的点位 |
表2 eDNA采样技术的发展
Table 2 Development of eDNA sampling technology
| 取样层次 | 技术发展 | 主要特点 |
|---|---|---|
| 水样 | Niskin瓶 无人机技术 自动取水 | 低采样成本、高保存成本、低运输成本,运输过程中的降解不利于DNA保存。适合短距离、少点位采样 |
| 滤膜 | 背包式Smith-Root eDNA过滤器 环境样本处理器 背包式现场水生eDNA采样套装 Tri-mode eDNA采集器 水下自动取样器 水下自助机器人Clio与Supr采集器 Dartmouth Ocean Technologies Inc.公司的eDNA采样器 大容量 eDNA采样器 自动基因采集器 原位自主生物采集器 多点原位核酸采集器 被动吸附 | 极大地降低了运输负担,更利于DNA的保存,但仍需要运输滤膜,不能实时监测等。适合长距离、多点位采样 |
| 基因序列 | 环境样本处理器 背包式DNA检测仪+手持式定量聚合酶链式反应(Quantitative Polymerase Chain Reaction, qDCR)设备 自主微生物传感器 集成原位基因分析仪 基于牛顿纳米孔技术的移动实验室 | 几乎没有运输样品的负担,可以连续监测,但是造价昂贵。适合需要连续监测的点位 |
| 方法 | 优点 | 缺点 |
|---|---|---|
| 生物调研[ | 数据准确、全面、有时效性 | 部分生物(如鱼类)难以调研、数据可能具有强的主观性 |
| eDNA[ | 对水体的DNA有较全面的概括 | 数据量需根据相对丰度进行调研 |
| 文献调研[ | 便于搜集总结资料 | 数据的准确性存疑 |
| 经验估计[ | 能根据部分已有的资料进行估计 | 数据的代表性存疑 |
| 模型计算[ | 根据少量数据进行计算 | 模型的代表性存疑 |
| 同位素[ | 较为准确、方便 | 无法表征生物量 |
表3 生物量等数据获取方法
Table 3 Acquisition methods of biomass and other data
| 方法 | 优点 | 缺点 |
|---|---|---|
| 生物调研[ | 数据准确、全面、有时效性 | 部分生物(如鱼类)难以调研、数据可能具有强的主观性 |
| eDNA[ | 对水体的DNA有较全面的概括 | 数据量需根据相对丰度进行调研 |
| 文献调研[ | 便于搜集总结资料 | 数据的准确性存疑 |
| 经验估计[ | 能根据部分已有的资料进行估计 | 数据的代表性存疑 |
| 模型计算[ | 根据少量数据进行计算 | 模型的代表性存疑 |
| 同位素[ | 较为准确、方便 | 无法表征生物量 |
| 方法 | 优点 | 缺点 |
|---|---|---|
| 经典公式 | 可以随时优化,根据具体的情况进行修正,包括级联反应[ | 复杂,费时费力 |
| 贝叶斯方法 | 可以表示为图形结构或概率链。贝叶斯网络的优势在于其能够将专家和利益相关者的判断与现场收集的数据结合起来 | 无法轻松获取食物网动态和能量循环机制,预测性可能会受到影响 |
| 异速缩放模型 | 通过计算学方法进行食物网研究,可以对不同的功能组进行缩放[ | 对能量传递的表征不清晰,复杂 |
| 非线性模型 | 通过简单的关系构建复杂的食物网模型[ | 构建的模型,生物种类是有限的 |
| 网络模型 | 网络理论包括基于交互网络的简单参数化的生态系统建模方法的广泛集合。这些模型的范围从加权网络模型到结构方程模型[ | 复杂,数据搜集较难 |
| 动力系统理论方法 | 采用动力系统理论方法的生态系统模型,使用确定性方法来预测生态系统如何随时间变化。这些方法已被用于预测物种重新引入对整个生态系统的影响[ | 模型通常基于Lotka-Volterra方程或类似方程,并且可能具有苛刻的数据要求,尤其是在模型复杂的情况下 |
表4 食物网模型构建方法及优缺点
Table 4 Food web model construction method and its advantages and disadvantages
| 方法 | 优点 | 缺点 |
|---|---|---|
| 经典公式 | 可以随时优化,根据具体的情况进行修正,包括级联反应[ | 复杂,费时费力 |
| 贝叶斯方法 | 可以表示为图形结构或概率链。贝叶斯网络的优势在于其能够将专家和利益相关者的判断与现场收集的数据结合起来 | 无法轻松获取食物网动态和能量循环机制,预测性可能会受到影响 |
| 异速缩放模型 | 通过计算学方法进行食物网研究,可以对不同的功能组进行缩放[ | 对能量传递的表征不清晰,复杂 |
| 非线性模型 | 通过简单的关系构建复杂的食物网模型[ | 构建的模型,生物种类是有限的 |
| 网络模型 | 网络理论包括基于交互网络的简单参数化的生态系统建模方法的广泛集合。这些模型的范围从加权网络模型到结构方程模型[ | 复杂,数据搜集较难 |
| 动力系统理论方法 | 采用动力系统理论方法的生态系统模型,使用确定性方法来预测生态系统如何随时间变化。这些方法已被用于预测物种重新引入对整个生态系统的影响[ | 模型通常基于Lotka-Volterra方程或类似方程,并且可能具有苛刻的数据要求,尤其是在模型复杂的情况下 |
| [1] |
Famiglietti J S, Rodell M. Water in the balance[J]. Science, 2013, 340(6138): 1300-1301.
DOI PMID |
| [2] | Davies B R, Thoms M, Meador M. An assessment of the ecological impacts of inter-basin water transfers, and their threats to river basin integrity and conservation[J]. Aquatic Conservation: Marine and Freshwater Ecosystems, 1992, 2(4): 325-349. |
| [3] | Qin J. Invasions of two estuarine gobiid species interactively induced from water diversion and saltwater intrusion[J]. Management of Biological Invasions, 2019, 10(1): 139-150. |
| [4] | Jr Wescoat J L. Institutional levels of water management in the Colorado River basin region: A macro-historical geographic review[J]. Frontiers in Water, 2023, 4, doi: 10.3389/frwa.2022.1024055. |
| [5] | MacPhee E, Wilks G. Rehabilitation of former snowy scheme sites in Kosciuszko National Park[J]. Ecological Management & Restoration, 2013, 14(3): 159-171. |
| [6] | Gale S J. The snowy water inquiry: Food, power, politics and the environment[J]. Australian Geographical Studies, 1999, 37(3): 301-313. |
| [7] | Wine M L, Rimmer A, Laronne J B. Agriculture, diversions, and drought shrinking Galilee Sea[J]. Science of the Total Environment, 2019, 651: 70-83. |
| [8] | Yan H L, Lin Y Q, Chen Q W, et al. A review of the eco-environmental impacts of the south-to-north water diversion: Implications for interbasin water transfers[J]. Engineering, 2023, 30: 161-169. |
| [9] | Nong X Z, Shao D G, Zhong H, et al. Evaluation of water quality in the South-to-North Water Diversion Project of China using the water quality index (WQI) method[J]. Water Research, 2020, 178, doi: 10.1016/j.watres.2020.115781. |
| [10] | Cheng Y H, Zhang H, Yin W. Nutrient transport following water transfer through the world’s largest water diversion channel[J]. Journal of Environmental Sciences, 2024, 135: 703-714. |
| [11] | Zhao P, Li Z G, Zhang R Q, et al. Does water diversion project deteriorate the water quality of reservoir and downstream? A case-study in Danjiangkou reservoir[J]. Global Ecology and Conservation, 2020, 24, doi: 10.1016/j.gecco.2020.e01235. |
| [12] | Qu X, Chen Y S, Liu H, et al. A holistic assessment of water quality condition and spatiotemporal patterns in impounded lakes along the eastern route of China’s South-to-North water diversion project[J]. Water Research, 2020, 185, doi: 10.1016/j.watres.2020.116275. |
| [13] | Lü S J, Li C G, Gao F. Hydrodynamic features and water ecology improvement of Yuehai Lake based on ecological water diversion[J]. Alexandria Engineering Journal, 2022, 61(4): 2909-2918. |
| [14] | Peng F J, Li K F, Liang R F, et al. Shallow lake water exchange process before and after water diversion projects as affected by wind field[J]. Journal of Hydrology, 2021, 592, doi: 10.1016/j.jhydrol.2020.125785. |
| [15] | Tang C Y, He C, Li Y P, et al. Diverse responses of hydrodynamics, nutrients and algal biomass to water diversion in a eutrophic shallow lake[J]. Journal of Hydrology, 2021, 593, doi: 10.1016/j.jhydrol.2020.125933. |
| [16] | Yang Y Q, Zhang J Y, Yan W M, et al. Impact assessment of water diversion project on urban aquatic ecological environment[J]. Ecological Indicators, 2021, 125, doi: 10.1016/j.ecolind.2021.107496. |
| [17] | Zhou Y Q, Chen L L, Zhou L, et al. Key factors driving dissolved organic matter composition and bioavailability in lakes situated along the Eastern Route of the South-to-North Water Diversion Project, China[J]. Water Research, 2023, 233, doi: 10.1016/j.watres.2023.119782. |
| [18] | Yang H K, Li Y J, Liu H Y, et al. The variation of DOM during long distance water transport by the China South to North Water Diversion Scheme and impact on drinking water treatment[J]. Frontiers of Environmental Science & Engineering, 2024, 18(5), doi: 10.1007/s11783-024-1819-0. |
| [19] | He J, Yang Y, Wu X, et al. Responses of dissolved organic matter (DOM) characteristics in eutrophic lake to water diversion from external watershed[J]. Environmental Pollution, 2022, 312, doi: 10.1016/j.envpol.2022.119992. |
| [20] | Jiang M L, Xiao Q T, Deng J M, et al. Ecological water diversion activity changes the fate of carbon in a eutrophic lake[J]. Environmental Research, 2024, 245, doi: 10.1016/j.envres.2023.117959. |
| [21] | Dai J Y, Wu S Q, Wu X F, et al. Impacts of a large river-to-lake water diversion project on lacustrine phytoplankton communities[J]. Journal of Hydrology, 2020, 587, doi: 10.1016/j.jhydrol.2020.124938. |
| [22] | Xiao Q T, Liu Z J, Hu Z H, et al. Notable changes of carbon dioxide in a eutrophic lake caused by water diversion[J]. Journal of Hydrology, 2021, 603, doi: 10.1016/j.jhydrol.2021.127064. |
| [23] | Wang Z Y, Chen Q W, Zhang J Y, et al. Water diversion is not to blame for phosphorus enrichment in Taihu Lake[J]. Engineering, 2024, 35: 10-14. |
| [24] | Sun R, Wei J L, Zhang S S, et al. The dynamic changes in phytoplankton and environmental factors within Dongping Lake (China) before and after the South-to-North Water Diversion Project[J]. Environmental Research, 2024, 246, doi: 10.1016/j.envres.2024.118138. |
| [25] | Fu L, Shen Y M, Zhang H X, et al. Effects of water diversion projects on water environment in Chaohu Lake[J]. Limnologica, 2022, 97, doi: 10.1016/j.limno.2022.126026. |
| [26] | Yang H H, Lu G H, Yan Z H, et al. Residues, bioaccumulation, and trophic transfer of pharmaceuticals and personal care products in highly urbanized rivers affected by water diversion[J]. Journal of Hazardous Materials, 2020, 391, doi: 10.1016/j.jhazmat.2020.122245. |
| [27] | Yan Z H, Chen Y F, Bao X H, et al. Microplastic pollution in an urbanized river affected by water diversion: Combining with active biomonitoring[J]. Journal of Hazardous Materials, 2021, 417, doi: 10.1016/j.jhazmat.2021.126058. |
| [28] | Huang S, Peng C R, Wang Z C, et al. Spatiotemporal distribution of microplastics in surface water, biofilms, and sediments in the world’s largest drinking water diversion project[J]. Science of the Total Environment, 2021, 789, doi: 10.1016/j.scitotenv.2021.148001. |
| [29] | Liu Y Y, Hua Z L, Lu Y, et al. Quinolone distribution, trophodynamics, and human exposure risk in a transit-station lake for water diversion in East China[J]. Environmental Pollution, 2022, 311, doi: 10.1016/j.envpol.2022.119985. |
| [30] | Wei J H, Hu K Y, Xu J Q, et al. Determining heavy metal pollution in sediments from the largest impounded lake in the eastern route of China’s South-to-North Water Diversion Project: Ecological risks, sources, and implications for lake management[J]. Environmental Research, 2022, 214: 114118, doi: 10.1016/j.envres.2022.114118. |
| [31] | Liu T, Qian X, Wang S, et al. Occurrence and transport of perfluoroalkyl acids (PFAAs) in a Yangtze River Water Diversion Project during water diversion and flooding[J]. Water Research, 2021, 205, doi: 10.1016/j.watres.2021.117662. |
| [32] | Chu K J, Liu Y Y, Hua Z L, et al. Spatio-temporal distribution and dynamics of antibiotic resistance genes in a water-diversion lake, China[J]. Journal of Environmental Management, 2023, 348, doi: 10.1016/j.jenvman.2023.119232. |
| [33] | Yang Y, Xu M Z, Chen X Y, et al. Establishment risk of invasive golden mussel in a water diversion project: An assessment framework[J]. Environmental Science and Ecotechnology, 2024, 17, doi: 10.1016/j.ese.2023.100305. |
| [34] | 黄轶昕. 中国南水北调工程血吸虫病问题研究现状[J]. 中国血吸虫病防治杂志, 2020, 32(5): 441-447. |
| Huang Y X. The South-to-North Water Diversion Project and schistosomiasis: An overview[J]. Chin J Schisto Control, 2020, 32(5): 441-447. (in Chinese) | |
| [35] | Guo C B, Chen Y S, Gozlan R E, et al. Patterns of fish communities and water quality in impounded lakes of China’s South-to-North Water Diversion Project[J]. Science of the Total Environment, 2020, 713, doi: 10.1016/j.scitotenv.2020.136515. |
| [36] | Yu Z D, Wang H, Miao M S, et al. Long-term monitoring of community succession in impoundment lake: Responses of macroinvertebrate to South-to-North Water Diversion Project[J]. Ecological Indicators, 2020, 118, doi: 10.1016/j.ecolind.2020.106734. |
| [37] | Zhang C M, Zhu F X, Wang Y Z, et al. Assembly processes of eukaryotic plankton communities in the world’s largest drinking water diversion project[J]. Science of the Total Environment, 2023, 884, doi: 10.1016/j.scitotenv.2023.163665. |
| [38] | Zhang S S, Pang Y M, Xu H Z, et al. Shift of phytoplankton assemblages in a temperate lake located on the eastern route of the South-to-North Water Diversion Project[J]. Environmental Research, 2023, 227, doi: 10.1016/j.envres.2023.115805. |
| [39] | Hu X Y, Hu M, Zhu Y, et al. Phytoplankton community variation and ecological health assessment for impounded lakes along the eastern route of China’s South-to-North Water Diversion Project[J]. Journal of Environmental Management, 2022, 318, doi: 10.1016/j.jenvman.2022.115561. |
| [40] | Xia W T, Zhu B, Zhang S H, et al. Climate, hydrology, and human disturbance drive long-term (1988—2018) macrophyte patterns in water diversion lakes[J]. Journal of Environmental Management, 2022, 319, doi: 10.1016/j.jenvman.2022.115726. |
| [41] | Tachamo Shah R D, Sharma S, Bharati L. Water diversion induced changes in aquatic biodiversity in monsoon-dominated rivers of Western Himalayas in Nepal: Implications for environmental flows[J]. Ecological Indicators, 2020, 108, doi: 10.1016/j.ecolind.2019.105735. |
| [42] | Lü J L, Yuan R Q, Wang S Q. Water diversion induces more changes in bacterial and archaeal communities of river sediments than seasonality[J]. Journal of Environmental Management, 2021, 293, doi: 10.1016/j.jenvman.2021.112876. |
| [43] | Zhang C, Nong X Z, Zhong H, et al. A framework for exploring environmental risk of the longest inter-basin water diversion project under the influence of multiple factors: A case study in China[J]. Journal of Environmental Management, 2022, 322, doi: 10.1016/j.jenvman.2022.116036. |
| [44] | Chen Y L, Tian L D. Canal surface evaporation along the China’s South-to-North Water Diversion quantified by water isotopes[J]. Science of the Total Environment, 2021, 779, doi: 10.1016/j.scitotenv.2021.146388. |
| [45] | Alomari N K, Yusuf B, Ahmad Mohammad T, et al. Influence of diversion angle on water and sediment flow into diversion channel[J]. International Journal of Sediment Research, 2020, 35(6): 600-608. |
| [46] | Xiang C G, Huang W, Zhou H D, et al. Flow reduction effect on fish habitat below water diversion: A case study of the Central Yunnan Water Diversion Project[J]. Ecological Engineering, 2022, 175, doi: 10.1016/j.ecoleng.2021.106499. |
| [47] | Jiang Q S, Li J C, Sun Y X, et al. Deep-reinforcement-learning-based water diversion strategy[J]. Environmental Science and Ecotechnology, 2024, 17, doi: 10.1016/j.ese.2023.100298. |
| [48] | Yang H Y, Wang J Q, Li J H, et al. Modelling impacts of water diversion on water quality in an urban artificial lake[J]. Environmental Pollution, 2021, 276, doi: 10.1016/j.envpol.2021.116694. |
| [49] |
Karl H. Scale and structure in natural food webs[J]. Science, 1992, 257(5073): 1107-1109.
PMID |
| [50] | Lu S X, Zeng H H, Xiong F, et al. Advances in environmental DNA monitoring: Standardization, automation, and emerging technologies in aquatic ecosystems[J]. Science China Life Sciences, 2024, 67(7): 1368-1384. |
| [51] | de Carvalho D R, Ferreira F F, Dergam J A, et al. Food web structure of fish communities of Doce River, 5 years after the Fundão dam failure[J]. Environmental Monitoring and Assessment, 2024, 196(3), doi: 10.1007/s10661-024-12395-7. |
| [52] | Takahashi M, Saccò M, Kestel J H, et al. Aquatic environmental DNA: A review of the macro-organismal biomonitoring revolution[J]. Science of the Total Environment, 2023, 873, doi: 10.1016/j.scitotenv.2023.162322. |
| [53] | Borrelli J J, Relyea R A. A review of spatial structure of freshwater food webs: Issues and opportunities modeling within-lake meta-ecosystems[J]. Limnology and Oceanography, 2022, 67(8): 1746-1759. |
| [54] | Cremona F, Järvalt A, Bhele U, et al. Relationships between fisheries, foodweb structure, and detrital pathway in a large shallow lake[J]. Hydrobiologia, 2018, 820(1): 145-163. |
| [55] | Gauzens B, Brose U, Delmas E, et al. ATNr: Allometric trophic network models in R[J]. Methods in Ecology and Evolution, 2023, 14(11): 2766-2773. |
| [56] | Kim D, Won E J, Cho H E, et al. New insight into biomagnification factor of mercury based on food web structure using stable isotopes of amino acids[J]. Water Research, 2023, 245, doi: 10.1016/j.watres.2023.120591. |
| [57] | Embke H S, Vander Zanden M J. Lake food webs[M]// Encyclopedia of Inland Waters. Amsterdam: Elsevier, 2022: 225-233. |
| [58] |
Williams R J, Martinez N D. Limits to trophic levels and omnivory in complex food webs: Theory and data[J]. The American Naturalist, 2004, 163(3): 458-468.
PMID |
| [59] | Cattin M F, Bersier L F, Banašek-Richter C, et al. Phylogenetic constraints and adaptation explain food-web structure[J]. Nature, 2004, 427(6977): 835-839. |
| [60] |
White C R, Alton L A, Bywater C L, et al. Metabolic scaling is the product of life-history optimization[J]. Science, 2022, 377(6608): 834-839.
DOI PMID |
| [61] | Brose U, Ostling A, Harrison K. Unified spatial scaling of species and their trophic interactions[J]. Nature, 2004, 428(6979): 167-171. |
| [62] | Brose U, Berlow E L, Martinez N D. Scaling up keystone effects from simple to complex ecological networks[J]. Ecology Letters, 2005, 8(12): 1317-1325. |
| [63] | Schweiger E W, Grace J B, Cooper D, et al. Using structural equation modeling to link human activities to wetland ecological integrity[J]. Ecosphere, 2016, 7(11), doi: 10.1002/ecs2.1548. |
| [64] | Baker C M, Holden M H, Plein M, et al. Informing network management using fuzzy cognitive maps[J]. Biological Conservation, 2018, 224: 122-128. |
| [65] | Baker C M, Bode M, Dexter N, et al. A novel approach to assessing the ecosystem-wide impacts of reintroductions[J]. Ecological Applications, 2019, 29(1), doi: 10.1002/eap.1811. |
| [66] | Lurgi M, Ritchie E G, Fordham D A. Eradicating abundant invasive prey could cause unexpected and varied biodiversity outcomes: The importance of multispecies interactions[J]. Journal of Applied Ecology, 2018, 55(5): 2396-2407. |
| [67] | Christensen V, Walters C J. Ecopath with Ecosim: Methods, capabilities and limitations[J]. Ecological Modelling, 2004, 172(2/3/4): 109-139. |
| [68] | Koel T M, Tronstad L M, Arnold J L, et al. Predatory fish invasion induces within and across ecosystem effects in Yellowstone National Park[J]. Science Advances, 2019, 5(3), doi: 10.1126/sciadv.aav1139. |
| [69] |
Walsh J R, Carpenter S R, Vander Zanden M J. Invasive species triggers a massive loss of ecosystem services through a trophic cascade[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(15): 4081-4085.
DOI PMID |
| No related articles found! |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||

