[1] |
贾阳, 孙泽洲, 郑旸, 等. 星球车技术发展综述[J]. 深空探测学报(中英文), 2020, 7(5): 419-427.
|
|
Jia Y, Sun Z Z, Zheng Y, et al. Overview on development of planetary rover technology[J]. Journal of Deep Space Exploration, 2020, 7(5): 419-427. (in Chinese)
DOI
|
[2] |
于登云, 潘博, 马超. 星球探测机器人研究现状与发展展望[J]. 宇航学报, 2023, 44(4): 633-643.
|
|
Yu D Y, Pan B, Ma C. Research status and development prospect of planetary exploration robots[J]. Journal of Astronautics, 2023, 44(4): 633-643. (in Chinese)
|
[3] |
Creech S, Guidi J, Elburn D. Artemis: An overview of NASA’s activities to return humans to the moon[C]// 2022 IEEE Aerospace Conference (AERO). Piscataway: IEEE Press, 2022, doi: 10.1109/AER053065.2022.9843277.
|
[4] |
陆成宽. 《国家空间科学中长期发展规划(2024—2050年)》发布[N]. 科技日报, 2024-10-16(002).
|
|
Lu C K. Release of the National Space Science Medium- and Long-Term Development Plan (2024-2050)[N]. Science and Technology Daily, 2024-10-16(002). (in Chinese)
|
[5] |
Basilevsky A T, Kreslavsky M A, Karachevtseva I P, et al. Morphometry of small impact craters in the Lunokhod-1 and Lunokhod-2 study areas[J]. Planetary and Space Science, 2014, 92: 77-87.
|
[6] |
Li C L, Liu J J, Ren X, et al. The Chang’e 3 mission overview[J]. Space Science Reviews, 2015, 190(1): 85-101.
|
[7] |
Wilcox B, Nguyen T. Sojourner on Mars and lessons learned for future planetary rovers[C]// SAE Technical Paper Series. SAE International, 1998, doi: 10.4271/981695.
|
[8] |
Biesiadecki J J, Maimone M W. The Mars exploration rover surface mobility flight software driving ambition[C]// 2006 IEEE Aerospace Conference. Piscataway: IEEE Press, doi: 10.1109/AERO.2006.1655723.
|
[9] |
Gao Y. Contemporary planetary robotics: An approach toward autonomous systems[M]. Weinheim: Wiley-VCH, 2016.
|
[10] |
Grotzinger J P, Crisp J, Vasavada A R, et al. Mars science laboratory mission and science investigation[J]. Space Science Reviews, 2012, 170(1): 5-56.
|
[11] |
Verma V, Maimone M W, Gaines D M, et al. Autonomous robotics is driving Perseverance rover’s progress on Mars[J]. Science Robotics, 2023, 8(80), doi: 10.1126/scirobotics.adi3099.
|
[12] |
Tian H, Zhang T Y, Jia Y, et al. Zhurong: Features and mission of China’s first Mars rover[J]. The Innovation, 2021, 2(3), doi: 10.1016/j.xinn.2021.100121.
|
[13] |
Patel N, Slade R, Clemmet J. The ExoMars rover locomotion subsystem[J]. Journal of Terramechanics, 2010, 47(4): 227-242.
|
[14] |
Morea S F. The lunar roving vehicle: Historical perspective[C]// The Second Conference on Lunar Bases and Space Activities of the 21st Century. Washington, D.C.: NASA, 1993: 619-632.
|
[15] |
Costes N C, Farmer J E, George E B. Mobility performance of the lunar roving vehicle: Terrestrial studies, Apollo 15 results[M]. Washington, D.C.: NASA, 1972.
|
[16] |
Rochlis J, Delgado F, Graham J. Science crew operations and utility testbed[J]. Industrial Robot, 2006, 33(6): 443-450.
|
[17] |
NASA selects companies to advance moon mobility for Artemis missions[EB/OL]. [2025-02-20]. https://www.nasa.gov/news-release/nasa-selects-companies-to-advance-moon-mobility-for-artemis-missions/.
|
[18] |
罗小桃, 张崇峰, 胡震宇, 等. 我国首次载人月球车任务需求分析[J]. 载人航天, 2019, 25(5): 693-698.
|
|
Luo X T, Zhang C F, Hu Z Y, et al. Requirement analysis of the first manned lunar rover in China[J]. Manned Spaceflight, 2019, 25(5): 693-698. (in Chinese)
|
[19] |
Harrison D A, Ambrose R, Bluethmann B, et al. Next generation rover for lunar exploration[C]// 2008 IEEE Aerospace Conference. Piscataway: IEEE Press, 2008, doi: 10.1109/AERO.2008.4526234.
|
[20] |
Heverly M, Matthews J. A wheel-on-limb rover for lunar operations[M]. Pasadena: Jet Propulsion Laboratory, National Aeronautics and Space Administration, 2007.
|
[21] |
JAXA and Toyota reach agreement on taking up the challenge of international space exploration—Aim is to make future lunar mobility a reality[EB/OL]. (2019-03-12). [2025-02-20]. https://global.jaxa.jp/press/2019/03/20190312a.html.
|
[22] |
王康, 辛鹏飞, 王储, 等. 载人月面移动系统着陆行进一体化设计与验证[J]. 宇航学报, 2023, 44(9): 1401-1410.
|
|
Wang K, Xin P F, Wang C, et al. Designand verification of integrated suspension for landing and moving of manned lunar mobility system[J]. Journal of Astronautics, 2023, 44(9): 1401-1410. (in Chinese)
|
[23] |
我国载人登月初步方案解读[EB/OL]. [2025-02-20]. https://www.cnsa.gov.cn/n6758823/n6758838/c10080580/content.html.
|
|
Interpretation of China's preliminary manned lunar landing plan[EB/OL]. [2025-02-20]. https://www.cnsa.gov.cn/n6758823/n6758838/c10080580/content.html. (in Chinese)
|
[24] |
深空探测新突破:我国月球车新技术取得进展[EB/OL]. [2025-02-20]. http://kpzg.people.com.cn/n1/2024/0717/c404214-40279672.html.
|
|
New breakthrough in deep space exploration: China's lunar rover technology advances[EB/OL]. People's Daily Online, http://kpzg.people.com.cn/n1/2024/0717/c404214-40279672.html. (in Chinese)
|
[25] |
Guo J, Li Y, Huang B, et al. An online optimization escape entrapment strategy for planetary rovers based on Bayesian optimization[J]. Journal of Field Robotics, 2024, 41(8): 2518-2529.
|
[26] |
Li M, Wang H L, Tian D B, et al. Discrete element simulation of lunar dust suspension caused by lunar rover wheel[C]// Proceedings 2011 International Conference on Transportation, Mechanical, and Electrical Engineering (TMEE). Piscataway: IEEE Press, 2011: 316-319.
|
[27] |
Gaier J R. The effects of lunar dust on EVA systems during the Apollo missions: NASA/TM-2005-213610[R]. Washington, D. C.: NASA, 2007.
|
[28] |
贾阳, 申振荣, 庞彧, 等. 月面巡视探测器地面试验方法与技术综述[J]. 航天器环境工程, 2014, 31(5): 464-469.
|
|
Jia Y, Shen Z R, Pang Y, et al. A review of field test methods and technologies for lunar rover[J]. Spacecraft Environment Engineering, 2014, 31(5): 464-469. (in Chinese)
|
[29] |
高海波, 牛福亮, 刘振, 等. 悬吊式微低重力环境模拟技术研究现状与展望[J]. 航空学报, 2021, 42(1): 80-99.
|
|
Gao H B, Niu F L, Liu Z, et al. Suspended micro-low gravity environment simulation technology: Status quo and prospect[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(1): 80-99. (in Chinese)
|