[1] |
Buehler W J, Gilfrich J V, Wiley R C. Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi[J]. Journal of Applied Physics, 1963, 34(5): 1475-1477.
|
[2] |
Ullakko K, Huang J K, Kantner C, et al. Large magnetic‐field-induced strains in Ni2MnGa single crystals[J]. Applied Physics Letters, 1996, 69(13): 1966-1968.
|
[3] |
Chmielus M, Zhang X X, Witherspoon C, et al. Giant magnetic-field-induced strains in polycrystalline Ni-Mn-Ga foams[J]. Nature Materials, 2009, 8: 863-866.
DOI
PMID
|
[4] |
Kainuma R, Imano Y, Ito W, et al. Magnetic-field-induced shape recovery by reverse phase transformation[J]. Nature, 2006, 439(7079): 957-960.
|
[5] |
Bonnot E, Romero R, Mañosa L, et al. Elastocaloric effect associated with the martensitic transition in shape-memory alloys[J]. Physical Review Letters, 2008, 100(12): 125901, doi: 10.1103/PhysRevLett.100.125901.
|
[6] |
Firstov G, Timoshevski A, Kosorukova T, et al. Electronic and crystal structure of the high entropy TiZrHfCoNiCu intermetallics undergoing martensitic transformation[J]. MATEC Web of Conferences, 2015, 33: 06006, doi: 10.1051/matecconf/20153306006.
|
[7] |
徐殿国, 白凤强, 张相军, 等. 形状记忆合金执行器研究综述[J]. 电工技术学报, 2022, 37(20): 5144-5163.
|
|
Xu D G, Bai F Q, Zhang X J, et al. A review of the research on shape memory alloy actuators[J]. Transactions of China Electrotechnical Society, 2022, 37(20): 5144-5163. (in Chinese)
|
[8] |
渠磊, 闫泽红, 饶智祥, 等. 形状记忆合金在航空航天领域的应用研究综述[J]. 航空动力学报, 2022, 37(10): 2127-2141.
|
|
Qu L, Yan Z H, Rao Z X, et al. Review on shape memory alloys' application in field of aerospace[J]. Journal of Aerospace Power, 2022, 37(10): 2127-2141. (in Chinese)
|
[9] |
PadulA S, Creager C M. Shape memory alloy (SMA) tires—A new paradigm in tire performance[R]. Akron:the 7th Annual Meeting and Conference on Tire Science and Technology, 2018.
|
[10] |
Benafan O. Spanwise adaptive wing: An overview and challenges of in-flight wing flooding using shape memory alloys[C]// Shape Memory and Superelastic Technology Cenference and Exposition 2019. Kostanz: ASM, 2019: 476651.
|
[11] |
Huang D W, Yan X J, Zhang X Y, et al. Note: A SMA wire actuated extremely long-lifetime release actuator using two ball-lock mechanisms[J]. The Review of Scientific Instruments, 2017, 88(5): 056107, doi: 10.1063/1.4983336.
|
[12] |
Xiong Z W, Li M, Hao S J, et al. 3D-printing damage-tolerant architected metallic materials with shape recoverability via special deformation design of constituent material[J]. ACS Applied Materials & Interfaces, 2021, 13(33): 39915-39924.
|
[13] |
Seo J, Kim Y C, Hu J W. Pilot study for investigating the cyclic behavior of slit damper systems with recentering shape memory alloy (SMA) bending bars used for seismic restrainers[J]. Applied Sciences, 2015, 5(3): 187-208.
|
[14] |
Otsuka K, Ren X. Physical metallurgy of Ti-Ni-based shape memory alloys[J]. Progress in Materials Science, 2005, 50(5): 511-678.
|
[15] |
Sarkar S, Ren X B, Otsuka K. Evidence for strain glass in the ferroelastic-martensitic system Ti50-xNi50+x[J]. Physical Review Letters, 2005, 95(20): 205702, doi: 10.1103/physrevlett.95.205702.
|
[16] |
Ren X B. Strain glass and ferroic glass-Unusual properties from glassy nano-domains[J]. Physica Status Solidi B, 2014, 251(10): 1982-1992.
|
[17] |
Liang Q L, Wang D, Zhang J, et al. Novel B19' strain glass with large recoverable strain[J]. Physical Review Materials, 2017, 1(3): 033608, doi: 10.1103/PhysRevMaterials.1.033608.
|
[18] |
Jiang D Q, An J L, Liu Y N, et al. Nanocrystalline strain glass TiNiPt and its superelastic behavior[J]. Physical Review B, 2021, 104(2): 024102, doi: 10.1103/physrevb.104.024102.
|
[19] |
Ji Y C, Ding X D, Lookman T, et al. Heterogeneities and strain glass behavior: Role of nanoscale precipitates in low-temperature-aged Ti48.7Ni51.3 alloys[J]. Physical Review B, 2013, 87(10): 104110, doi: 10.1103/physrevb.87.104110.
|
[20] |
Wang D, Ji Y C, Ren X B, et al. Strain glass state, strain glass transition, and controlled strain release[J]. Annual Review of Materials Research, 2022, 52: 159-187.
|
[21] |
赵新青, 王凯, 吕超, 等. Ni-Ti基合金的应变玻璃转变及其研究进展[J]. 航空材料学报, 2025, 45(1): 1-14.
DOI
|
|
Zhao X Q, Wang K, Lyu C, et al. Progress in research on strain glass transition in Ni-Ti based alloys[J]. Journal of Aeronautical Materials, 2025, 45(1): 1-14. (in Chinese)
DOI
|
[22] |
Wang Y, Ren X B, Otsuka K. Shape memory effect and superelasticity in a strain glass alloy[J]. Physical Review Letters, 2006, 97(22): 225703, doi: 10.1103/PhysRevLett.97.225703.
|
[23] |
Wang D, Wang Y Z, Zhang Z, et al. Modeling abnormal strain states in ferroelastic systems: The role of point defects[J]. Physical Review Letters, 2010, 105(20): 205702, doi: 10.1103/PhysRevLett.105.205702.
|
[24] |
Zhou Y M, Xue D Z, Tian Y, et al. Direct evidence for local symmetry breaking during a strain glass transition[J]. Physical Review Letters, 2014, 112(2): 025701, doi: 10.1103/PhysRevLett.112.025701.
|
[25] |
Ji Y C, Wang D, Ding X D, et al. Origin of an isothermal R-martensite formation in Ni-rich Ti-Ni solid solution: Crystallization of strain glass[J]. Physical Review Letters, 2015, 114(5): 055701, doi: 10.1103/PhysRevLett.114.055701.
|
[26] |
Ren S, Xue D Z, Ji Y C, et al. Low-field-triggered large magnetostriction in iron-palladium strain glass alloys[J]. Physical Review Letters, 2017, 119(12): 125701, doi: 10.1103/PhysRevLett.119.125701.
|
[27] |
Ren S, Zong H X, Tao X F, et al. Boson-peak-like anomaly caused by transverse phonon softening in strain glass[J]. Nature Communications, 2021, 12(1): 5755, doi: 10.1038/s41467-021-26029-w.
|
[28] |
Liu C, Ji Y C, Tang J X, et al. A lightweight strain glass alloy showing nearly temperature-independent low modulus and high strength[J]. Nature Materials, 2022, 21(9): 1003-1007.
DOI
PMID
|
[29] |
Fang M X, Ji Y C, Ni Y, et al. Toughening ceramics down to cryogenic temperatures by reentrant strain-glass transition[J]. Physical Review Letters, 2023, 130(11): 116102, doi: 10.1103/PhysRevLett.130.116102.
|
[30] |
Xu Z Z, Ji Y C, Liu C, et al. A polymer-like ultrahigh-strength metal alloy[J]. Nature, 2024, 633(8030): 575-581.
|
[31] |
Liu J Y, Jin M J, Ni C, et al. Strain glassy behavior and premartensitic transition in Au7Cu5Al4 alloy[J]. Physical Review B, 2011, 84(14): 140102, doi: 10.1103/physRevB.84.140102.
|
[32] |
Wang D P, Chen X, Nie Z H, et al. Transition in superelasticity for Ni55-xCoxFe18Ga27alloys due to strain glass transition[J]. Europhysics Letters, 2012, 98(4): 46004, doi: 10.1209/0295-5075/98/46004.
|
[33] |
Chen H Y, Wang Y D, Nie Z H, et al. Unprecedented non-hysteretic superelasticity of [001]-oriented NiCoFeGa single crystals[J]. Nature Materials, 2020, 19(7): 712-718.
DOI
PMID
|
[34] |
Zhang K C, Wang K, Wang B, et al. Observing strain glass transition in Ti33Nb15Zr25Hf25O2 high entropy alloy with Elinvar effect[J]. Journal of Materials Science & Technology, 2024, 168: 16-23.
|
[35] |
Hao S J, Cui L S, Jiang D Q, et al. A transforming metal nanocomposite with large elastic strain, low modulus, and high strength[J]. Science, 2013, 339(6124): 1191-1194.
DOI
PMID
|
[36] |
Salje E K H, Ding X, Aktas O. Domain glass[J]. Physica Status Solidi B, 2014, 251(10): 2061-2066.
|
[37] |
Sherrington D. A spin glass perspective on ferroic glasses[J]. Physica Status Solidi B, 2014, 251(10): 1967-1981.
|
[38] |
Lloveras P, Castán T, Porta M, et al. Influence of elastic anisotropy on structural nanoscale textures[J]. Physical Review Letters, 2008, 100(16): 165707, doi: 10.1103/PhysRevLett.100.165707.
|
[39] |
Monroe J A, Raymond J E, Xu X, et al. Multiple ferroic glasses via ordering[J]. Acta Materialia, 2015, 101: 107-115.
|
[40] |
Stonaha P J, Karaman I, Arroyave R, et al. Glassy phonon heralds a strain glass state in a shape memory alloy[J]. Physical Review Letters, 2018, 120(24): 245701, doi: 10.1103/PhysRevLett.120.245701.
|
[41] |
Xu S, Pons J, Santamarta R, et al. Strain glass state in Ni-rich Ni-Ti-Zr shape memory alloys[J]. Acta Materialia, 2021, 218: 117232, doi: 10.1016/j.actamat.2021.117232.
|