[1] |
Fetting C. The European green deal[R]. Brussels: European Commission, 2020.
|
[2] |
Mann M, Babinec S, Putsche V. Energy storage grand challenge: Energy storage market report[R]. Golden: National Renewable Energy Laboratory, 2020.
|
[3] |
Liu C, Li F, Ma L P, et al. Advanced materials for energy storage[J]. Advanced Materials, 2010, 22(8): E28-E62, doi: 10.1002/adma.200903328.
|
[4] |
Mai L Q, Tian X C, Xu X, et al. Nanowire electrodes for electrochemical energy storage devices[J]. Chemical Reviews, 2014, 114(23): 11828-11862.
DOI
PMID
|
[5] |
Zhou G M, Xu L, Hu G W, et al. Nanowires for electrochemical energy storage[J]. Chemical Reviews, 2019, 119(20): 11042-11109.
DOI
PMID
|
[6] |
Yu K S, Pan X L, Zhang G B, et al. Nanowires in energy storage devices: Structures, synthesis, and applications[J]. Advanced Energy Materials, 2018, 8(32): 1802369, doi: 10.1002/aenm.201802369.
|
[7] |
Wang J L, Hassan M, Liu J W, et al. Nanowire assemblies for flexible electronic devices: Recent advances and perspectives[J]. Advanced Materials, 2018, 30(48): 1803430, doi: 10.1002/adma.201803430.
|
[8] |
Zhang L, Song T T, Shi L X, et al. Recent progress for silver nanowires conducting film for flexible electronics[J]. Journal of Nanostructure in Chemistry, 2021, 11(3): 323-341.
|
[9] |
Liu X, Long Y Z, Liao L, et al. Large-scale integration of semiconductor nanowires for high-performance flexible electronics[J]. ACS Nano, 2012, 6(3): 1888-1900.
DOI
PMID
|
[10] |
Law J, Yu J F, Tang W T, et al. Micro/nanorobotic swarms: From fundamentals to functionalities[J]. ACS Nano, 2023, 17(14): 12971-12999.
DOI
PMID
|
[11] |
Sharon M. Nanotechnology’s entry into the defense arena[M]//Nanotechnology in the Defense Industry: Advances, Innovation, and Practical Applications. Hoboken: Wiley, 2019: 1-35.
|
[12] |
Chan C K, Peng H, Liu G, et al. High-performance lithium battery anodes using silicon nanowires[J]. Nature Nanotechnology, 2008, 3(1): 31-35.
DOI
PMID
|
[13] |
He P, Zhang G B, Liao X B, et al. Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries[J]. Advanced Energy Materials, 2018, 8(10): 1702463, doi: 10.1002/aenm.201702463.
|
[14] |
Mai L Q, Hu B, Chen W, et al. Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries[J]. Advanced Materials, 2007, 19(21): 3712-3716.
|
[15] |
Yan M, Wang F, Han C, et al. Nanowire templated semihollow bicontinuous graphene scrolls: Designed construction, mechanism, and enhanced energy storage performance[J]. Journal of the American Chemical Society, 2013, 135(48): 18176-18182.
DOI
PMID
|
[16] |
Cai Z, Xu L, Yan M, et al. Manganese oxide/carbon yolk-shell nanorod anodes for high capacity lithium batteries[J]. Nano Letters, American Chemical Society, 2015, 15(1): 738-744.
|
[17] |
Shen L F, Uchaker E, Zhang X G, et al. Hydrogenated Li4Ti5O12 nanowire arrays for high rate lithium ion batteries[J]. Advanced Materials, 2012, 24(48): 6502-6506.
|
[18] |
Liang S H, Guan H, Zhang H N, et al. Intelligent off/on switchable electromagnetic wave absorbing material based on VO2 nanowires[J]. Chemical Engineering Journal, 2024, 489: 151025, doi: 10.1016/j.cej.2024.151025.
|
[19] |
Niu C J, Meng J S, Wang X P, et al. General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis[J]. Nature Communications, 2015, 6: 7402, doi: 10.1038/ncomms8402.
PMID
|
[20] |
Mai L Q, Yang F, Zhao Y L, et al. Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance[J]. Nature Communications, 2011, 2: 381, doi: 10.1038/ncomms1387.
|
[21] |
Yue Y, Zhang D, Wang P Y, et al. Large-area flexible carbon nanofilms with synergistically enhanced transmittance and conductivity prepared by reorganizing single-walled carbon nanotube networks[J]. Advanced Materials, 2024, 36(26): 2313971, doi: 10.1002/adma.202313971.
|
[22] |
Kim J, Kim M, Jung H, et al. Ultrastable 2D material-wrapped copper nanowires for high-performance flexible and transparent energy devices[J]. Nano Energy, 2023, 106: 108067, doi: 10.1016/j.nanoen.2022.108067.
|
[23] |
Xu Y D, Ye Z L, Zhao G G, et al. Phase-separated porous nanocomposite with ultralow percolation threshold for wireless bioelectronics[J]. Nature Nanotechnology, 2024, 19(8): 1158-1167.
DOI
PMID
|
[24] |
Yan M Y, Wang P Y, Pan X L, et al. Quadrupling the stored charge by extending the accessible density of states[J]. Chem, 2022, 8(9): 2410-2418.
|
[25] |
Liu T C, Amine K. Boosted on-chip energy storage with transistors[J]. National Science Review, 2022, 9(10): nwac161, doi: 10.1093/nsr/nwac161.
|
[26] |
Jin J, Wicks J, Min Q H, et al. Constrained C2 adsorbate orientation enables CO-to-acetate electroreduction[J]. Nature, 2023, 617(7962): 724-729.
|
[27] |
Mai L Q, Yan M Y, Zhao Y L. Track batteries degrading in real time[J]. Nature, 2017, 546(7659): 469-470.
|
[28] |
Grey C P, Tarascon J M. Sustainability and in situ monitoring in battery development[J]. Nature Materials, 2017, 16: 45-56, doi: 10.1038/nmat4777.
|
[29] |
Yang Y J, Liu X Z, Dai Z H, et al. In situ electrochemistry of rechargeable battery materials: Status report and perspectives[J]. Advanced Materials, 2017, 29(31): 1606922, doi: 10.1002/adma.201606922.
|
[30] |
Mai L Q, Dong Y J, Xu L, et al. Single nanowire electrochemical devices[J]. Nano Letters, 2010, 10(10): 4273-4278.
DOI
PMID
|
[31] |
Liao X B, Zhao Y L, Wang J H, et al. MoS2/MnO2 heterostructured nanodevices for electrochemical energy storage[J]. Nano Research, 2018, 11(4): 2083-2092.
|
[32] |
He Z, Chang L G, Lin Y, et al. Real-time visualization of solid-phase ion migration kinetics on nanowire monolayer[J]. Journal of the American Chemical Society, 2020, 142(17): 7968-7975.
DOI
PMID
|
[33] |
Yang Y, Shi C Q, Feijóo J, et al. Dynamic evolution of copper nanowires during CO2 reduction probed by operando electrochemical 4D-STEM and X-ray spectroscopy[J]. Journal of the American Chemical Society, 2024, 146(33): 23398-23405.
DOI
PMID
|