[1] |
CEADs Emerging Economy Carbon Dioxide Emissions Report, 2022. https://www.ceads.net.cn/user/search.php?kwtype=0&pagelang=cn&searchtype=titlekeyword&typeid=105&q=2022.
|
[2] |
Niu W Q, Li Y, Li Q, et al. Physical and chemical properties of metallurgical coke and its evolution in the blast furnace ironmaking process[J]. Fuel, 2024, 366, doi: 10.1016/j.fuel.2024.131277.
|
[3] |
Zhou Y L, Jiang X, Wang X A, et al. Optimizing iron ore proportion aimed for low cost by linear programming method[J]. Metallurgical and Materials Transactions B, 2022, 53(6): 4075-4086.
|
[4] |
Harvey L D D. Analysis of the theoretical and practical energy requirements to produce iron and steel, with summary equations that can be applied in developing future energy scenarios[J]. Journal of Sustainable Metallurgy, 2020, 6(2): 307-332.
DOI
|
[5] |
Mousa E, Lundgren M, Sundqvist Ökvist L, et al. Reduced carbon consumption and CO2 emission at the blast furnace by use of briquettes containing torrefied sawdust[J]. Journal of Sustainable Metallurgy, 2019, 5(3): 391-401.
|
[6] |
Lan C C, Hao Y J, Shao J N, et al. Effect of H2 on blast furnace ironmaking: A review[J]. Metals, 2022, 12(11), doi: 10.3390/met12111864.
|
[7] |
Zhang Z D, Tang J, Shi Q, et al. Effects of shaft tuyere parameters on gas movement behavior and burden reduction in oxygen blast furnace[J]. Sustainability, 2023, 15(12), doi: 10.3390/su15129159.
|
[8] |
Bao J W, Chu M S, Liu Z G, et al. Evolution behavior and mechanism of iron carbon agglomerates under simulated blast furnace smelting conditions[J]. Journal of Iron and Steel Research International, 2023, 30(9): 1714-1731.
|
[9] |
Shi Q, Tang J, Chu M S. Key issues and progress of industrial big data-based intelligent blast furnace ironmaking technology[J]. International Journal of Minerals, Metallurgy and Materials, 2023, 30(9): 1651-1666.
|
[10] |
Quader M A, Ahmed S, Dawal S Z, et al. Present needs, recent progress and future trends of energy-efficient ultra-low carbon dioxide (CO2) steelmaking (ULCOS) program[J]. Renewable and Sustainable Energy Reviews, 2016, 55: 537-549.
|
[11] |
Shao L, Xu J, Saxén H, et al. A numerical study on process intensification of hydrogen reduction of iron oxide pellets in a shaft furnace[J]. Fuel, 2023, 348, doi: 10.1016/j.fuel.2023.128375.
|
[12] |
Tang J, Chu M S, Li F, et al. Development and progress on hydrogen metallurgy[J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27(6): 713-723.
DOI
|
[13] |
Liu W G, Zuo H B, Wang J S, et al. The production and application of hydrogen in steel industry[J]. International Journal of Hydrogen Energy, 2021, 46(17): 10548-10569.
|
[14] |
Spreitzer D, Schenk J. Reduction of iron oxides with hydrogen: A review[J]. Steel Research International, 2019, 90(10), doi: 10.1002/srin.201900108.
|
[15] |
魏侦凯, 郭瑞, 谢全安. 日本环保炼铁工艺COURSE50新技术[J]. 华北理工大学学报(自然科学版), 2018, 40(3): 26-30.
|
|
Wei Z K, Guo R, Xie Q A. COURSE50 new technology of Japan’s environmental ironmaking process[J]. Journal of North China University of Science and Technology (Natural Science Edition), 2018, 40(3): 26-30. (in Chinese)
|
[16] |
严珺洁. 超低二氧化碳排放炼钢项目的进展与未来[J]. 中国冶金, 2017, 27(2): 6-11.
|
|
Yan J J. Progress and future of ultra-low CO2 steel making program[J]. China Metallurgy, 2017, 27(2): 6-11. (in Chinese)
|
[17] |
Kushnir D, Hansen T, Vogl V, et al. Adopting hydrogen direct reduction for the Swedish steel industry: A technological innovation system (TIS) study[J]. Journal of Cleaner Production, 2020, 242, doi: 10.1016/j.jclepro.2019.118185.
|
[18] |
Vogl V, Åhman M, Nilsson L J. Assessment of hydrogen direct reduction for fossil-free steelmaking[J]. Journal of Cleaner Production, 2018, 203: 736-745.
|
[19] |
王新东, 侯长江, 钟金红. 氢能产业发展现状及其在我国钢铁行业的应用[J]. 河北冶金, 2024(7): 1-8.
|
|
Wang X D, Hou C J, Zhon J H. The development status of hydrogen industry and its application practice in China’s iron and steel industry[J]. Hebei Metallurgy, 2024(7): 1-8.
|