前瞻科技 ›› 2024, Vol. 3 ›› Issue (4): 9-21.DOI: 10.3981/j.issn.2097-0781.2024.04.001
党成雄1(), 杨光星1, 王宇2, 王浩帆2, 余皓2,†(
)
收稿日期:
2024-10-15
修回日期:
2024-11-01
出版日期:
2024-12-20
发布日期:
2024-12-24
通讯作者:
†
作者简介:
党成雄,副教授。主要从事生物质热化学制氢、CO2捕获与催化转化、钙基化学链的构建与应用等领域的研究。主持国家自然科学基金、广东省自然科学基金等项目5项。获2020年中国颗粒学会优秀博士论文奖等。发表论文29篇。电子信箱:cxdang@gzhu.edu.cn。基金资助:
DANG Chengxiong1(), YANG Guangxing1, WANG Yu2, WANG Haofan2, YU Hao2,†(
)
Received:
2024-10-15
Revised:
2024-11-01
Online:
2024-12-20
Published:
2024-12-24
Contact:
†
摘要:
绿氢已经成为构建多元绿色能源结构的重要技术选项,在实现“碳达峰与碳中和”目标进程中具有关键作用。文章旨在综述绿氢生产技术的研发进展和发展趋势。根据中国氢能产业的发展现状和政策背景,界定了适合于国内外研发现状的绿氢定义,重点介绍了可再生能源分解水制氢、生物质制氢技术,分析了各自的技术特点、优势和挑战。此外,还探讨了核能制氢、甲烷热解制氢、绿氨制氢和水氢等虽不属于传统的绿氢,但有可能对碳减排起到重要作用的技术。最后,对绿氢生产中存在的问题进行了总结,从政策激励、技术创新、市场应用等方面对中国绿氢发展给出了建议。
党成雄, 杨光星, 王宇, 王浩帆, 余皓. 绿氢生产技术研究进展及发展趋势[J]. 前瞻科技, 2024, 3(4): 9-21.
DANG Chengxiong, YANG Guangxing, WANG Yu, WANG Haofan, YU Hao. Research Progress and Trends of Green Hydrogen Production Technology[J]. Science and Technology Foresight, 2024, 3(4): 9-21.
项目 | AWE | PEMWE | AEMWE | SOWE |
---|---|---|---|---|
电解质 | 氢氧化钾溶液 | PFSA膜 | 阴离子交换膜 | 钇稳定的氧化锆 |
阴极材料 | 镍基材料 | 铂基材料 | 镍基材料 | Ni/YSZ |
阳极材料 | 镍基材料 | 钌或铱基材料 | 镍、铁、钴氧化物 | YSZ |
操作温度/oC | 70~90 | 50~80 | 40~60 | 700~850 |
操作压力/MPa | 小于3 | 小于7 | 小于3.5 | 0.1 |
运行寿命/kh | 60~100 | 20~60 | <小于10 | — |
电流密度/ (A·cm-2) | 0.2~0.8 | 1.0~2.0 | 0.2~2.0 | 0.3~1.0 |
效率/% | 50~78 | 50~83 | 57~59 | 89 |
电压/V | 1.4~3.0 | 1.4~2.5 | 1.4~2.0 | 1.0~1.5 |
技术成熟度 | 成熟工业化 | 商业化过程中 | 示范装置 | 示范装置 |
优点 | 已成熟工业化、无贵金属电催化剂、成本相对较低、长期稳定性 | 商业化技术、高电流密度、气体纯度高、反应器紧凑、响应迅速 | 无贵金属电催化剂、低浓度(1 mol/L KOH)液体电解质 | 效率高、效率更高 |
缺点 | 电流密度有限、气体交叉(渗透)、高浓度碱电解质 | 电池组件成本高、贵金属电催化剂、酸性电解质 | 稳定性不够、尚在研发过程中 | 稳定性不够、尚在研发过程中 |
表1 电解水制氢技术参数对比
Table 1 Comparison of technical parameters for hydrogen production through water electrolysis
项目 | AWE | PEMWE | AEMWE | SOWE |
---|---|---|---|---|
电解质 | 氢氧化钾溶液 | PFSA膜 | 阴离子交换膜 | 钇稳定的氧化锆 |
阴极材料 | 镍基材料 | 铂基材料 | 镍基材料 | Ni/YSZ |
阳极材料 | 镍基材料 | 钌或铱基材料 | 镍、铁、钴氧化物 | YSZ |
操作温度/oC | 70~90 | 50~80 | 40~60 | 700~850 |
操作压力/MPa | 小于3 | 小于7 | 小于3.5 | 0.1 |
运行寿命/kh | 60~100 | 20~60 | <小于10 | — |
电流密度/ (A·cm-2) | 0.2~0.8 | 1.0~2.0 | 0.2~2.0 | 0.3~1.0 |
效率/% | 50~78 | 50~83 | 57~59 | 89 |
电压/V | 1.4~3.0 | 1.4~2.5 | 1.4~2.0 | 1.0~1.5 |
技术成熟度 | 成熟工业化 | 商业化过程中 | 示范装置 | 示范装置 |
优点 | 已成熟工业化、无贵金属电催化剂、成本相对较低、长期稳定性 | 商业化技术、高电流密度、气体纯度高、反应器紧凑、响应迅速 | 无贵金属电催化剂、低浓度(1 mol/L KOH)液体电解质 | 效率高、效率更高 |
缺点 | 电流密度有限、气体交叉(渗透)、高浓度碱电解质 | 电池组件成本高、贵金属电催化剂、酸性电解质 | 稳定性不够、尚在研发过程中 | 稳定性不够、尚在研发过程中 |
图2 生物质部分氧化和生物质完全氧化化学链制氢示意图 CLRB:Chemical Looping Reforming of Biomass,化学循环生物质重整。
Fig. 2 Chemical-looping hydrogen production from partial oxidation of biomass and complete oxidation of biomass
[1] | Liu W, Wan Y M, Xiong Y L, et al. Green hydrogen standard in China: Standard and evaluation of low-carbon hydrogen, clean hydrogen, and renewable hydrogen[J]. International Journal of Hydrogen Energy, 2022, 47(58): 24584-24591. |
[2] | Velazquez A A, Dodds P E. Green hydrogen characterisation initiatives: Definitions, standards, guarantees of origin, and challenges[J]. Energy Policy, 2020, 138, doi: 10.1016/j.enpol.2020.111300. |
[3] |
Hand E. Hidden hydrogen[J]. Science, 2023, 379(6633): 630-636.
DOI PMID |
[4] | Sun H N, Xu X M, Kim H, et al. Electrochemical water splitting: Bridging the gaps between fundamental research and industrial applications[J]. Energy & Environmental Materials, 2023, 6(5), doi:10.1002/eem2.12441. |
[5] | Gaikwad P S, Mondal K, Shin Y K, et al. Enhancing the Faradaic efficiency of solid oxide electrolysis cells: Progress and perspective[J]. NPJ Computational Materials, 2023, 9, doi: 10.1038/s41524-023-01044-1. |
[6] | Fang Q P, Blum L, Menzler N H, et al. Solid oxide electrolyzer stack with 20 000 h of operation[J]. ECS Transactions, 2017, 78(1): 2885-2893. |
[7] | Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. |
[8] | Takata T, Jiang J Z, Sakata Y, et al. Photocatalytic water splitting with a quantum efficiency of almost unity[J]. Nature, 2020, 581(7809): 411-414. |
[9] | Ehrhart B D, Muhich C L, Al-Shankiti I, et al. System efficiency for two-step metal oxide solar thermochemical hydrogen production-Part 1: Thermodynamic model and impact of oxidation kinetics[J]. International Journal of Hydrogen Energy, 2016, 41(44): 19881-19893. |
[10] | Safari F, Dincer I. A review and comparative evaluation of thermochemical water splitting cycles for hydrogen production[J]. Energy Conversion and Management, 2020, 205, doi: 10.1016/j.enconman.2019.112182. |
[11] | Jiao F, Liu T X, Chen C, et al. Advances in solar thermochemical cycles for hydrogenproduction[J]. Chinese Science Bulletin, 2022, 67(19): 2142-2157. |
[12] | Kadam R S, Nirukhe A B, Yadav G D. Energy saving in Cu-Cl thermochemical cycle for green hydrogen production: Use of heat integration approach and simulation tools[J]. Energy Conversion and Management, 2023, 293, doi: 10.1016/j.enconman.2023.117431. |
[13] | Farsi A, Zamfirescu C, Dincer I, et al. Thermodynamic assessment of a lab-scale experimental copper-chlorine cycle for sustainable hydrogen production[J]. International Journal of Hydrogen Energy, 2019, 44(33): 17595-17610. |
[14] | Zhang P, Zhou C L, Guo H F, et al. Design of integrated laboratory-scale iodine sulfur hydrogen production cycle at INET[J]. International Journal of Energy Research, 2016, 40(11): 1509-1517. |
[15] | Guo H F, Zhang P, Chen S Z, et al. Modeling and validation of the iodine-sulfur hydrogen production process[J]. AIChE Journal, 2014, 60(2): 546-558. |
[16] | Cao L C, Yu I K M, Xiong X N, et al. Biorenewable hydrogen production through biomass gasification: A review and future prospects[J]. Environmental Research, 2020, 186, doi: 10.1016/j.envres.2020.109547. |
[17] | Udomsirichakorn J, Salam P A. Review of hydrogen-enriched gas production from steam gasification of biomass: The prospect of CaO-based chemical looping gasification[J]. Renewable and Sustainable Energy Reviews, 2014, 30: 565-579. |
[18] | Heeley K, Orozco R L, MacAskie L E, et al. Supercritical water gasification of microalgal biomass for hydrogen production: A review[J]. International Journal of Hydrogen Energy, 2024, 49: 310-336. |
[19] | Striūgas N, Zakarauskas K, Stravinskas G, et al. Comparison of steam reforming and partial oxidation of biomass pyrolysis tars over activated carbon derived from waste tire[J]. Catalysis Today, 2012, 196(1): 67-74. |
[20] | Lai W H, Lai M P, Horng R F. Study on hydrogen-rich syngas production by dry autothermal reforming from biomass derived gas[J]. International Journal of Hydrogen Energy, 2012, 37(12): 9619-9629. |
[21] | Saad J M, Williams P T. Pyrolysis-catalytic-dry reforming of waste plastics and mixed waste plastics for syngas production[J]. Energy & Fuels, 2016, 30(4): 3198-3204. |
[22] | Dang C X, Li Y H, Yusuf S M, et al. Calcium cobaltate: A phase-change catalyst for stable hydrogen production from bio-glycerol[J]. Energy & Environmental Science, 2018, 11(3): 660-668. |
[23] | Dang C X, Wu S J, Cao Y H, et al. Co-production of high quality hydrogen and synthesis gas via sorption-enhanced steam reforming of glycerol coupled with methane reforming of carbonates[J]. Chemical Engineering Journal, 2019, 360: 47-53. |
[24] | Luo M, Yi Y, Wang S Z, et al. Review of hydrogen production using chemical-looping technology[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 3186-3214. |
[25] | Cabello A, Mendiara T, Abad A, et al. Production of hydrogen by chemical looping reforming of methane and biogas using a reactive and durable Cu-based oxygen carrier[J]. Fuel, 2022, 322, doi: 10.1016/j.fuel.2022.124250. |
[26] | Lachén J, Durán P, Peña J A, et al. High purity hydrogen from coupled dry reforming and steam iron process with cobalt ferrites as oxygen carrier: Process improvement with the addition of NiAl2O4 catalyst[J]. Catalysis Today, 2017, 296: 163-169. |
[27] | Sánchez-Bastardo N, Schlögl R, Ruland H. Methane pyrolysis for zero-emission hydrogen production: A potential bridge technology from fossil fuels to a renewable and sustainable hydrogen economy[J]. Industrial & Engineering Chemistry Research, 2021, 60(32): 11855-11881. |
[28] | Hermesmann M, Müller T E. Green, turquoise, blue, or grey? Environmentally friendly hydrogen production in transforming energy systems[J]. Progress in Energy and Combustion Science, 2022, 90, doi: 10.1016/j.pecs.2022.100996. |
[29] | Alhamed H, Behar O, Saxena S, et al. From methane to hydrogen: A comprehensive review to assess the efficiency and potential of turquoise hydrogen technologies[J]. International Journal of Hydrogen Energy, 2024, 68: 635-662. |
[30] | Hasnan N S N, Timmiati S N, Lim K L, et al. Recent developments in methane decomposition over heterogeneous catalysts: An overview[J]. Materials for Renewable and Sustainable Energy, 2020, 9(2), doi: 10.1007/s40243-020-00167-5. |
[31] | Adnan A I, Ong M Y, Nomanbhay S, et al. Technologies for biogas upgrading to biomethane: A review[J]. Bioengineering, 2019, 6(4), doi: 10.3390/bioengineering6040092. |
[32] | McConnachie M, Konarova M, Smart S. Literature review of the catalytic pyrolysis of methane for hydrogen and carbon production[J]. International Journal of Hydrogen Energy, 2023, 48(66): 25660-25682. |
[33] |
Upham D C, Agarwal V, Khechfe A, et al. Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon[J]. Science, 2017, 358(6365): 917-921.
DOI PMID |
[34] | Parkinson B, Patzschke C F, Nikolis D, et al. Methane pyrolysis in monovalent alkali halide salts: Kinetics and pyrolytic carbon properties[J]. International Journal of Hydrogen Energy, 2021, 46(9): 6225-6238. |
[35] | Park D K, Park S N, Kim H J, et al. Research on the production of turquoise hydrogen from methane (CH4) through plasma reaction[J]. Energies, 2024, 17(2), doi: 10.3390/en17020484. |
[36] |
Chen L N, Song Z G, Zhang S C, et al. Ternary NiMo-Bi liquid alloy catalyst for efficient hydrogen production from methane pyrolysis[J]. Science, 2023, 381(6660): 857-861.
DOI PMID |
[37] |
陈科宇, 徐金鑫, 吴桂波, 等. 绿氨产业现状及发展展望[J]. 化工进展, 2024, 43(5): 2544-2553.
DOI |
Chen K Y, Xu J X, Wu G B, et al. Current situation and development prospect of green ammonia industry[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2544-2553. (in Chinese)
DOI |
|
[38] | Ojelade O A, Zaman S F, Ni B J. Green ammonia production technologies: A review of practical progress[J]. Journal of Environmental Management, 2023, 342, doi:10.1016/j.jenvman.2023.118348. |
[39] | Wang M, Khan M A, Mohsin I, et al. Can sustainable ammonia synthesis pathways compete with fossil-fuel based Haber-Bosch processes?[J]. Energy & Environmental Science, 2021, 14(5): 2535-2548. |
[40] | Andriani D, Bicer Y. A review of hydrogen production from onboard ammonia decomposition: Maritime applications of concentrated solar energy and boil-off gas recovery[J]. Fuel, 2023, 352, doi: 10.1016/j.fuel.2023.128900. |
[41] | Deng Z H, Hu T, Tian J M, et al. Performance of a novel single-tubular ammonia-based reactor driven by concentrated solar power[J]. Solar Energy, 2020, 204: 696-707. |
[42] |
Zhou B, Zhang N N, Wu Y J, et al. An option for green and sustainable future: Electrochemical conversion of ammonia into nitrogen[J]. Journal of Energy Chemistry, 2021, 60: 384-402.
DOI |
[43] | Yu M L, Wang K, Vredenburg H. Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen[J]. International Journal of Hydrogen Energy, 2021, 46(41): 21261-21273. |
[44] | 郭天超. 我国发展核能制氢的重要性及其发展路径研究[J]. 现代工业经济和信息化, 2023, 13(7): 166-168. |
Guo T C. A study on the importance of developing nuclear energy to produce hydrogen in China and its development path[J]. Modern Industrial Economy and Informationization, 2023, 13(7): 166-168. (in Chinese) | |
[45] | 李智勇, 于倩, 胡江, 等. 基于热化学循环的核能制氢技术经济分析与研究[J]. 无机盐工业, 2022, 54(9): 21-27. |
Li Z Y, Yu Q, Hu J, et al. Economic analysis and research on nuclear hydrogen production technology based on thermochemical cycle[J]. Inorganic Chemicals Industry, 2022, 54(9): 21-27. (in Chinese) | |
[46] | 张平, 于波, 徐景明. 核能制氢技术的发展[J]. 核化学与放射化学, 2011, 33(4): 193-203. |
Zhang P, Yu B, Xu J M. Development of nuclear hydrogen production technology[J]. Nuclear Chemistry and Radiochemistry, 2011, 33(4): 193-203. | |
[47] | Arcos J M M, Santos D M F. The hydrogen color spectrum: Techno-economic analysis of the available technologies for hydrogen production[J]. Gases, 2023, 3(1): 25-46. |
[48] | 伍浩松, 戴定. 美国积极推进核能制氢技术的商业示范[J]. 国外核新闻, 2020(12): 20-21. |
Wu H S, Dai D. The United States actively promotes the commercial demonstration of nuclear energy hydrogen production technology[J]. Foreign Nuclear News, 2020(12): 20-21. (in Chinese) | |
[49] |
张平, 徐景明, 石磊, 等. 中国高温气冷堆制氢发展战略研究[J]. 中国工程科学, 2019, 21(1): 20-28.
DOI |
Zhang P, Xu J M, Shi L, et al. Nuclear hydrogen production based on high temperature gas cooled reactor in China[J]. Strategic Study of CAE, 2019, 21(1): 20-28. (in Chinese)
DOI |
|
[50] | Park J, Kang S, Kim S, et al. Enhancing the economic viability and reliability of renewables based electricity supply through power-to-gas-to-power with green hydrogen[J]. Energy Conversion and Management, 2024, 310, doi: 10.1016/j.enconman.2024.118485. |
[51] | Saeedi Z M, Zamani P M, Sohani A, et al. A super-efficient method for hydrogen production from seawater[J]. International Journal of Hydrogen Energy, 2022, 47(62): 26135-26155. |
[52] | Bartolucci L, Cordiner S, Mulone V, et al. Multi-hub hydrogen refueling station with on-site and centralized production[J]. International Journal of Hydrogen Energy, 2023, 48(54): 20861-20874. |
[53] | Li X, Huang K L, Meng X C. Rapid Joule heating fabrication of Ru cluster-loaded WO3 on carbon nanotubes to enhance alkaline electrocatalytic hydrogen production activity[J]. Journal of Alloys and Compounds, 2024, 1004, doi: 10.1016/j.jallcom.2024.175885. |
[54] |
Zhang R Q, Liu X W, Song N N, et al. Magnetic induction heating-driven rapid cold start of ammonia decomposition for hydrogen production[J]. Journal of the American Chemical Society, 2024, 146(42): 28635-28641.
DOI PMID |
[55] | Hussain A I, Shabanian J, Latifi M, et al. Hydrogen production from methane thermal pyrolysis in a microwave heating-assisted fluidized bed reactor[J]. Energy & Fuels, 2024, 38(21): 21617-21632. |
[56] | Wang K P, Bhuiyan S I, Baky M A H, et al. Electric fuel conversion with hydrogen production by multiphase plasma at ambient pressure[J]. Chemical Engineering Journal, 2022, 433, doi: 10.1016/j.cej.2021.133660. |
[57] | González-Cobos J, Prévot M S, Vernoux P. Electrolysis of lignin for production of chemicals and hydrogen[J]. Current Opinion in Electrochemistry, 2023, 39, doi: 10.1016/j.coelec.2023.101255. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京公网安备 11010802038735号