前瞻科技 ›› 2024, Vol. 3 ›› Issue (3): 75-86.DOI: 10.3981/j.issn.2097-0781.2024.03.006
收稿日期:
2024-06-15
修回日期:
2024-06-25
出版日期:
2024-09-20
发布日期:
2024-09-18
通讯作者:
†
作者简介:
张国栋,副研究员。中国微米纳米技术学会特种微纳器件与系统分会副秘书长。主要从事特种MEMS压力传感器、MEMS火工器件及性能测试技术研究。获陕西省技术发明奖一等奖1项。出版专著1部,发表论文10余篇,授权发明专利10余件。电子信箱:zgd20190624@xjtu.edu.cn。基金资助:
ZHANG Guodong1,2(), ZHAO Yulong1,2,†(
), HU Tengjiang1,2
Received:
2024-06-15
Revised:
2024-06-25
Online:
2024-09-20
Published:
2024-09-18
Contact:
†
摘要:
微小型无人平台等新一代武器装备的发展对弹药系统提出了微型化、智能化、集成化等要求,因此,微起爆系统应运而生。文章分析了微起爆系统的组成及特点,并结合应用环境要求,从微结构换能元、微纳结构药剂、微安保装置、炸药驱动飞片4个关键技术以及微起爆系统应用的角度,对国内外相关研究现状进行总结和研判,针对中国微起爆系统面临的挑战,提出了未来微起爆系统的发展思路和建议。
张国栋, 赵玉龙, 胡腾江. 微起爆系统关键技术研究现状与发展建议[J]. 前瞻科技, 2024, 3(3): 75-86.
ZHANG Guodong, ZHAO Yulong, HU Tengjiang. Research Status and Development Suggestions on Key Technologies of Micro-initiation System[J]. Science and Technology Foresight, 2024, 3(3): 75-86.
[1] | 季自力, 王文华. 美军大力发展智能化单兵装备[J]. 军事文摘, 2020(3): 24-28. |
Ji Z L, Wang W H. The US military vigorously develops intelligent individual equipment[J]. Military Digest, 2020(3): 24-28. (in Chinese) | |
[2] | 王立轩, 李明富, 吴松效, 等. 信息化战争下的美军无人作战装备[J]. 军事文摘, 2021(11): 17-21. |
Wang L X, Li M F, Wu S X, et al. U.S. army unmanned combat equipment under information war[J]. Military Digest, 2021(11): 17-21. (in Chinese) | |
[3] | Renz R. Kaman MEMS based fuzing technology[C]// 58th Annual Fuze Conference. Baltimore. Virgina: National Defense Industrial Association, 2015. https://ndiastorage.blob.core.usgovcloudapi.net/ndia/2015/fuze/17731Renz.pdf. |
[4] |
解瑞珍, 褚恩义, 戴旭涵, 等. 微起爆序列设计及传爆与隔爆性能[J]. 兵工学报, 2021, 42(6): 1178-1184.
DOI |
Xie R Z, Chu E Y, Dai X H, et al. Design and detonation transfer/explosion interruption performance of micro initiation train[J]. Acta Armamentarii, 2021, 42(6): 1178-1184. (in Chinese)
DOI |
|
[5] | Taton G, Lagrange D, Conedera V, et al. Micro-chip initiator realized by integrating Al/CuO multilayer nanothermite on polymeric membrane[J]. Journal of Micromechanics and Microengineering, 2013, 23(10), doi: 10.1088/0960-1317/23/10/105009. |
[6] | Liu W, Su Q, Xue Y, et al. Design and performance of NiCr-based micro-heater with lower excitation energy[J]. Journal of Physics: Conference Series, 2020, 1507(2), doi: 10.1088/1742-6596/1507/2/022015. |
[7] | Mehta N, Fuchs B, Cheng G, et al. Design and development of micro energetic initiators (MEI)[R/OL]. [2024-06-30]. http://ael.chungbuk.ac.kr/ael/research/technology_handbook/electroexplosive_devices/mehta-mei-2003%20ann%20fuze%20conf.pdf. |
[8] | 解瑞珍, 薛艳, 任小明, 等. 桥区参数对Ni-Cr薄膜换能元发火性能的影响[J]. 火工品, 2012(1): 18-20. |
Xie R Z, Xue Y, Ren X M, et al. Effect of bridge parameters on the firing sensitivity of Ni-Cr alloy thin film transducer elements[J]. Initiators & Pyrotechnics, 2012(1): 18-20. (in Chinese) | |
[9] | Martinez-Tovar B, Foster M C. Titanium semiconductor bridge igniter: US20080017063[P]. 2008-01-24. |
[10] | 徐兴, 张文超, 秦志春, 等. 复合半导体桥的电爆特性[J]. 含能材料, 2015, 23(1): 7-12. |
Xu X, Zhang W C, Qin Z C, et al. Electrical explosive characteristics of composite semiconductor bridge[J]. Chinese Journal of Energetic Materials, 2015, 23(1): 7-12. (in Chinese) | |
[11] | Qiu X, Tang R, Liu R, et al. A micro initiator realized by reactive Ni/Al nanolaminates for MEMS applications[C]// 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference. Beijing. Piscataway: IEEE Press, 2011: 1665-1668. |
[12] | 王丽玲, 王亮, 蒋小华, 等. Ti/B多层结构含能点火元件的制备与表征[J]. 四川兵工学报, 2014, 35(4): 138-140. |
Wang L L, Wang L, Jiang X H, et al. Fabrication and characterization of Ti/B multilayer reactive igniters[J]. Journal of Sichuan Ordnance, 2014, 35(4): 138-140. (in Chinese) | |
[13] | Fu S, Shen R Q, Zhu P, et al. Metal-interlayer-metal structured initiator containing Al/CuO reactive multilayer films that exhibits improved ignition properties[J]. Sensors and Actuators A: Physical, 2019, 292: 198-204. |
[14] | Zheng Z L, Zhang W C, Yu C P, et al. Integration of the 3DOM Al/Co3O4 nanotHermite film with a semiconductor bridge to realize a high-output micro-energetic igniter[J]. RSC Advances, 2018, 8(5): 2552-2560. |
[15] | Wang J, Jiang X J, Zhang L, et al. Design and fabrication of energetic superlattice like-PTFE/Al with superior performance and application in functional micro-initiator[J]. Nano Energy, 2015, 12: 597-605. |
[16] | Yi Z X, Cao Y Q, Yuan J W, et al. Functionalized carbon fibers assembly with Al/Bi2O3: A new strategy for high-reliability ignition[J]. Chemical Engineering Journal, 2020, 389, doi: 10.1016/j.cej.2020.124254. |
[17] | Nellums R R, Son S F, Groven L J. Preparation and characterization of aqueous nanothermite inks for direct deposition on SCB initiators[J]. Propellants, Explosives, Pyrotechnics, 2014, 39(3): 463-470. |
[18] | 沈瑞琪, 叶迎华. 含能材料特种效应与应用[M]. 北京: 国防工业出版社, 2020. |
Shen R Q, Ye Y H. Special effect and application of energetic material[M]. Beijing: National Defense Industry Press, 2020. (in Chinese) | |
[19] | Liu W, Ren X M, Xie R Z, et al. Fabrication and performance of a nickel-chromium (NiCr) igniter integrated with TVS diode for ESD protection[J]. AIP Advances, 2023, 13(3), doi: 10.1063/5.0137883. |
[20] |
李娜, 许建兵, 叶迎华, 等. 三维多孔微纳米结构叠氮化铜的原位合成及表征[J]. 火炸药学报, 2015, 38(4): 63-66.
DOI |
Li N, Xu J B, Ye Y H, et al. In-situ synthesis and characterization of three-dimensional porous micro-nano structured copper azide[J]. Chinese Journal of Explosives & Propellants, 2015, 38(4): 63-66. (in Chinese) | |
[21] | Yu Q X, Li M Y, Zeng Q X, et al. Copper azide prepared by reaction of hollow CuO microspheres with moist HN3 gas[J]. Materials Letters, 2018, 224: 18-21. |
[22] | 王燕兰, 张方, 张蕾, 等. 两种不同结构纳米叠氮化铜的含能特性研究[J]. 火工品, 2018(1): 32-35. |
Wang Y L, Zhang F, Zhang L, et al. Study on detonation properties of two different nano-structure copper azide[J]. Initiators & Pyrotechnics, 2018(1): 32-35. (in Chinese) | |
[23] | 李兵, 曾庆轩, 李明愉, 等. 多孔铜尺度对其叠氮化反应的影响[J]. 含能材料, 2016, 24(10): 995-999. |
Li B, Zeng Q X, Li M Y, et al. Influence of porous copper dimension on its azide reaction[J]. Chinese Journal of Energetic Materials, 2016, 24(10): 995-999. (in Chinese) | |
[24] | Wang Q Y, Han J M, Zhang Y Y, et al. Fabrication of copper azide film through metal-organic framework for micro-initiator applications[J]. ACS Applied Materials & Interfaces, 2019, 11(8): 8081-8088. |
[25] |
Zhang L, Zhang F, Wang Y L, et al. In-situ preparation of copper azide by direct ink writing[J]. Materials Letters, 2019, 238: 130-133.
DOI |
[26] | Yu C P, Zheng Z L, Zhang W C, et al. Sustainable electrosynthesis of porous CuN3 films for functional energetic chips[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(9): 3969-3975. |
[27] | 张程刚, 胡艳, 郭锐, 等. 填充叠氮化铜的碳纳米管纳米材料的制备研究[J]. 爆破器材, 2017, 46(1): 1-5. |
Zhang C G, Hu Y, Guo R, et al. Preparation of copper azide filled carbon nanotubes[J]. Explosive Materials, 2017, 46(1): 1-5. (in Chinese) | |
[28] | Xu R J, Yan Z Z, Yang L, et al. Nanoscale homogeneous energetic copper Azides@Porous carbon hybrid with reduced sensitivity and high ignition ability[J]. ACS Applied Materials & Interfaces, 2018, 10(26): 22545-22551. |
[29] | 李婷婷. 碳基纳米叠氮化铜复合含能材料研究[D]. 南京: 南京理工大学, 2018. |
Li T T. Research on carbon based nano Cu(N3)2 composite energetic materials[D]. Nanjing: Nanjing University of Science and Technology, 2018. (in Chinese) | |
[30] | Ihnen A, Lee W, Fuchs B, et al. Inkjet printing of nano-composite high-explosive materials[R/OL]. [2024-06-30]. https://ndiastorage.blob.core.usgovcloudapi.net/ndia/2010/fuze/VAStec.pdf. |
[31] | Wang J F, Liu Y Y, Fan Z M, et al. Ink-based 3D printing technologies for graphene-based materials: A review[J]. Advanced Composites and Hybrid Materials, 2019, 2(1): 1-33. |
[32] | 李春燕. CL-20基微纳结构传爆药剂设计及3D微喷成型技术研究[D]. 太原: 中北大学, 2022. |
Li C Y. Design and 3D micro-jet printing of CL-20-based booster explosives with micro-nano structure[D]. Taiyuan: North University of China, 2022. (in Chinese) | |
[33] | Zhang L, Zhang F, Wang Y L, et al. Preparation and characterization of direct write explosive ink based on CL-20[J]. Journal of Physics: Conference Series, 2019, 1209, doi: 10.1088/1742-6596/1209/1/012016. |
[34] | Wang D J, Zheng B H, Guo C P, et al. Formulation and performance of functional sub-micro CL-20-based energetic polymer composite ink for direct-write assembly[J]. RSC Advances, 2016, 6(113): 112325-112331. |
[35] | Robinson C H, Wood R H, Hoang T Q. Development of inexpensive, ultra‑miniature MEMS‑based safety and arming device for small‑caliber munition fuzes[R/OL]. [2024-06-05]. http://mindtel.com/2005/SDSU.Geol600.Sensor_Networks/sensornets.refs/2003.%20ASC.%20Army%20Studies%20Conference/CO-02.pdf. |
[36] | Qin Y, Chen L Y, Hao Y P. Optimization of a fuze MEMS setback arming device based on the EDM process[J]. IEEE Access, 2020, 8: 84741-84752. |
[37] | Hu T J, Fang K, Zhang Z M, et al. The research on MEMS S&A device with metal-silicon composite structure[J]. Journal of Microelectromechanical Systems, 2019, 28(6): 1088-1099. |
[38] | Zhu P, Hou G, Wang H Y, et al. Design, preparation, and performance of a planar ignitor inserted with PyroMEMS safe and arm device[J]. Journal of Microelectromechanical Systems, 2018, 27(6): 1186-1192. |
[39] | 胡腾江, 任炜, 赵玉龙. 低g值惯性延时电热MEMS安全与解除保险装置[J]. 探测与控制学报, 2020, 42(5): 21-26. |
Hu T J, Ren W, Zhao Y L. Electro-thermal MEMS S & A device with low g value inertia delay mechanism[J]. Journal of Detection & Control, 2020, 42(5): 21-26. (in Chinese) | |
[40] | 郭俊峰, 曾庆轩, 李明愉, 等. 叠氮化铜驱动飞片起爆HNS-IV的研究[J]. 火工品, 2015(6): 1-4. |
Guo J F, Zeng Q X, Li M Y, et al. Study on HNS-IV initiated by flyer driven by cupric azide[J]. Initiators & Pyrotechnics, 2015(6): 1-4. (in Chinese) | |
[41] | 郭俊峰, 曾庆轩, 李明愉, 等. 飞片材料对微装药驱动飞片形貌的影响[J]. 高压物理学报, 2017, 31(3): 315-320. |
Guo J F, Zeng Q X, Li M Y, et al. Influence of flyer material on morphology of flyer driven by micro charge[J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 315-320. (in Chinese) | |
[42] | 穆云飞, 沈瑞琪, 张伟, 等. 微装药驱动飞片速度及形态研究[J]. 火工品, 2022(6): 9-13. |
Mu Y F, Shen R Q, Zhang W, et al. Study on velocity and shape of micro-charge-driven flyer[J]. Initiators & Pyrotechnics, 2022(6): 9-13. (in Chinese) | |
[43] | 孙承纬, 文尚刚, 赵峰. 多级炸药爆轰高速驱动技术的Gurney模型优化分析[J]. 爆炸与冲击, 2004, 24(4): 299-304. |
Sun C W, Wen S G, Zhao F. An optimal analysis of multi-stage explosive accelerated high velocity flyers with the improved Gurney model[J]. Explosion and Shock Waves, 2004, 24(4): 299-304. (in Chinese) | |
[44] | Yadav H S. Effect of flyer plate velocity and rate of crater expansion on performance of explosive reactive armour[J]. Defence Science Journal, 2002, 52(4): 429-438. |
[45] | 张凡, 张蕊, 解瑞珍. 硅基微雷管驱动飞片的速度计算研究[J]. 火工品, 2018(1): 57-60. |
Zhang F, Zhang R, Xie R Z. Study on velocity calculation of flyer driven by Si-based micro-detonator[J]. Initiators & Pyrotechnics, 2018(1): 57-60. (in Chinese) | |
[46] | Yue P, Long X P, Jiang X H, et al. Only numerical modeling of detonation properties for some metal azides[J]. Propellants, Explosives, Pyrotechnics, 2020, 45(4): 600-606. |
[47] | 刘文祥, 李捷, 钟方平. 组合γ状态方程在数值计算上的应用及分析[J]. 爆炸与冲击, 2009, 29(2): 209-212. |
Liu W X, Li J, Zhong F P. Application and analysis of a combinational γ equation of state for detonation products[J]. Explosion and Shock Waves, 2009, 29(2): 209-212. (in Chinese) | |
[48] | 沈飞, 王辉, 袁建飞, 等. RDX基含铝炸药不同尺寸的圆筒试验及数值模拟[J]. 含能材料, 2013, 21(6): 777-780. |
Shen F, Wang H, Yuan J F, et al. Different diameter cylinder tests and numerical simulation of RDX based aluminized explosive[J]. Chinese Journal of Energetic Materials, 2013, 21(6): 777-780. (in Chinese) | |
[49] | Peng Y, Yu Q X, Yin Q, et al. Performance investigation of a copper azide micro detonator using experiments and simulations[J]. Propellants, Explosives, Pyrotechnics, 2022, 47(4), doi: 10.1002/prep.202100343. |
[50] | 覃文志, 王猛, 陈清畴, 等. 基于激光驱动的复合飞片参数与性能[J]. 含能材料, 2015, 23(2): 173-177. |
Qin W Z, Wang M, Chen Q C, et al. Parameters and characteristics of multi-flyers driven by laser[J]. Chinese Journal of Energetic Materials, 2015, 23(2): 173-177. (in Chinese) | |
[51] | 邓向阳, 彭其先, 赵剑衡, 等. VISAR测量电爆炸箔驱动飞片速度的实验研究[J]. 火炸药学报, 2007, 30(2): 45-48. |
Deng X Y, Peng Q X, Zhao J H, et al. Experimental studies on velocity measurement of mylar flyer driven by exploding metal foils with VISAR[J]. Chinese Journal of Explosives & Propellants, 2007, 30(2): 45-48. (in Chinese) | |
[52] | Zhang G D, Zhao Y L, Fan C H. Research progress in the flight characteristics of flyers driven by different technologies[J]. Applied Sciences, 2023, 13(7), doi: 10.3390/app13074309. |
[53] | Lafont R. Pyro-MEMS technological breakthrough in fuze domain[R/OL]. [2024-04-07]. https://ndiastorage.blob.core.usgovcloudapi.net/ndia/2011/fuze/SessionIIIALaFont.pdf. |
[54] | Kaman Corporation. Engineering and manufacturing capabilities bomb and missile fuzing experts[EB/OL]. [2024-06-05]. https://kaman.com/brands/kaman-fuzing/engineering and manufacturing capabil ities. |
[55] | Burke P, Pergolizzi T. XM1156 precision guidance kit(PGK)[R/OL]. [2024-04-07]. https://ndiastorage.blob.core.usgovcloudapi.net/ndia/2008/fuze/VABurke.pdf. |
[56] | 解瑞珍, 陈建华, 刘卫, 等. 基于MEMS工艺的起爆序列设计研究[J]. 传感技术学报, 2021, 34(11): 1451-1457. |
Xie R Z, Chen J H, Liu W, et al. Design of explosive train based on MEMS technology[J]. Chinese Journal of Sensors and Actuators, 2021, 34(11): 1451-1457. (in Chinese) |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京公网安备 11010802038735号